Home
Class 12
MATHS
If int(0)^(x^(3)(1+x))f(t)dt=x then f(2)...

If `int_(0)^(x^(3)(1+x))f(t)dt=x` then f(2) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x^(2)(1+x))f(t)dt = x then find f(2)

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, thenf '(x)+f(x) is equal to (a)-cos x(b)-sin x(c)int_(0)^(x)(x-t)f(t)dt (d) 0

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of 25f(2) must be_________.

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals

If f((1)/(x))+x^(2)f(x)=0,x>0 and I=int_(1/x)^(x)f(t)dt,(1)/(2)<=x<=2, then I is equal to