Home
Class 12
MATHS
Solve the equation: tan^(-1)sqrt(x^2+x)+...

Solve the equation: `tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solution of the equation tan^-1 sqrt(x(x+1)) + sin^-1sqrt(x^2 + x + 1) = pi/2

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :

Find the real solutions of the eqution tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

Solve the following equations. tan^-1 (sqrt(x^2 + x) + sin^-1 sqrt(x^2 + x + 1) = pi/2

The number of real solutions of the equations: tan^-1 sqrt(x(x+1)) + sin^-1 sqrt(x^2 + x+1) = pi/2 is

Solve: tan^(-1)sqrt(x(x+1) + sin^(-1)sqrt(1+x+x^2) = pi/2

The number of real solutions of the equation tan^(-1) sqrt( x ( x + 1)) + sin^(-1) sqrt(x^(2) + x + 1) = (pi)/(2) is

The sum of the solutions of the equation 2sin^(-1)sqrt(x^(2)+x+1)+cos^(-1)sqrt(x^(2)+x)=(3pi)/2 is