Home
Class 11
MATHS
Re define the function f(x)=|x-2|+|2+x|...

Re define the function `f(x)=|x-2|+|2+x|,-3lexle3`

Text Solution

Verified by Experts

Since, `|x-2|=-(x-2),xlt2`
`x-2,xge2`
and `|2+x|=-(2+x ),xlt2`
`(2+x),xle2`
`:. "f"(x)=|x-2|+|2+x|,x-3lexle3`
`{{:(-(x2)-(2+x),-3lexle3),((x-2)+2+x,-2lexle2),(x-2+2+x,2lexle3):}`
`{{:(-2x,-3lexlt-2),(4,-2lexlt2),(2,2lexle3):}`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|12 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR|Exercise FILLERS|2 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR|Exercise True /False|5 Videos
  • PROBABILITY

    NCERT EXEMPLAR|Exercise Matching The Columns|2 Videos
  • SEQUENCE AND SERIES

    NCERT EXEMPLAR|Exercise Match the comumms|2 Videos

Similar Questions

Explore conceptually related problems

Verify Rolle's Theorem for the function : f(x)={{:(-4x+5", "0lexle1),(2x-3" , "1ltxle2):}

Examine the applicability of Rolle's Theorem for the function : f(x)=2+(x-1)^(2//3) in the interval 0lexle2 .

Consider the function f(x)=x^(3)-8x^(2)+20x-13 The function f(x) defined for R to R

The function defined as f(x) = 2x^(3) -6x +3 is

Verify the truth of Rolle's Theorem for the following functions : f(x)=(x-2)(x-3)(x-4) in the interval 2lexle4 .

Find the value of a if the function f(x) defined by f(x)={2x-a,x 2 if function continuous at x=2

Discuss the applicability of Rolle's theorem on the function given by f(x) = {{:(x^(2)+1,if0lexle1),(3-x,if1lexle2):}

If a curve X has probability density function (pdf) f(x)={{:(ax","0lexle1),(a","1lexle2),(3a-ax","2lexle3),(0",""otherewise"):} Then, a is equal to

If a curve X has probability density function (pdf) f(x)={{:(ax","0lexle1),(a","1lexle2),(3a-ax","2lexle3),(0",""otherewise"):} Then, a is equal to

If a funciton f(x) is defined for x in [0,1] , then the function f(2x+3) is defined for