Home
Class 11
MATHS
Let f={(2,4),(5,6),(8,-1),(10,3) and g...

Let `f={(2,4),(5,6),(8,-1),(10,3)`
and `g={(2,5),(7,1),(8,4),(10,13),(11,5)}`
be two real functions. Then, match the following .

The domain of `f-g,f+g,f*g,(f)/(g)` is domain of f `nn` domain of g. Then, find their images.

Text Solution

Verified by Experts

We have
`f={(2,4),(5,6),(8,1),(10,-3)`
and `g={(2,5),(7,1),(8,4),(10,13),(11,5)}`
So, `f-g,f+g,f*g,(f)/(g)` are defined in the domain (domain of f`nn` domain of g)
`i.e., {2,5,8,10}nn{2,7,8,10,11} rArr {2,8,10}`
(i) `(f-g)(2)=f(2)-g(2)=4-5=-1`
`(f-g)(8)=f(8)-g(8)=-1-4=-5`
`(f-g)(10)=f(10)-g(10)=-3-13=-16`
`f-g={(2,-1),(8,-5),(10,-16)}`
(ii) `(f+g) (2)=f(2)=f(2)+g(2)=4+5=9`
`(f+g)(8)=f(8)+g(8)=-1+4=3`
`(f+g)(10)=f(10)+g(10)=-3+13=10`
`:. f-g={(2,9).(8,3),(10,10)}`
(iii) `(f-g )(2)=f(2)*g(2)=4xx5=20`
`(f*g)(8)=f(8)*(8)=-1xx4=-4`
`(f*g)(10)=f(10)*g(10)=-3xx13=-39`
`:. fg={(2,20),(8,-4),(10,-39)}`
(iv) `((f)/(g))(2)=(f(2))/(g(2))=(4)/(5)`
`((f)/(g))(8)=(f(8))/(g(8))=(-1)/(4)`
`((f)/(g))(10)=(f(10))/(g(10))=(-3)/(13)`
`:. (f)/(g)={(2,(4)/(d)),(8,-(1)/(4)),(10,(-3)/(13))}`
Hence , the correct matches are `(i) rarr(c),(ii) rarr(d),(iii)rarr(b), (iv) rarr(a).`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR|Exercise True /False|5 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|12 Videos
  • PROBABILITY

    NCERT EXEMPLAR|Exercise Matching The Columns|2 Videos
  • SEQUENCE AND SERIES

    NCERT EXEMPLAR|Exercise Match the comumms|2 Videos

Similar Questions

Explore conceptually related problems

Let f={(1,6),(2,5),(4,3),(5,2),(8-1),(10,-3)} and g={(2,0),(3,2),(5,6),(7,10),(8,12),(10,16)} . Find (i) dom (f+g) (ii) dom ((f)/(g)) .

If f={(1,4),(2,5),(3,6)} and g={(4,8),(5,7),(6,9)} , then gof is

The functions f and g have the respective domains A and B. Hence the domain of f+g is

If f = {(1,4), (2,5),(3,5) and g ={(4,8),(5,7),(6,9)}, then gof is

Let f(x) be a function whose domain is [-5,7] and g(x) = |2x + 5| . Then, the domain of fog (x) is .

if f={(4,5),(5,6),(6,−4)}, g={(4,−4),(6,5),(8,5)} then find f+g

Domain of g(x)={x:x in domain of g(x) and g(x)in domain of f(x) and domain of fog(x) has atleast 3 elements )

Let f be a function with domain [-3, 5] and let g (x) = | 3x + 4 | , Then the domain of (fog) (x) is