Let `f={(2,4),(5,6),(8,-1),(10,3)` and `g={(2,5),(7,1),(8,4),(10,13),(11,5)}` be two real functions. Then, match the following . The domain of `f-g,f+g,f*g,(f)/(g)` is domain of f `nn` domain of g. Then, find their images.
Text Solution
Verified by Experts
We have `f={(2,4),(5,6),(8,1),(10,-3)` and `g={(2,5),(7,1),(8,4),(10,13),(11,5)}` So, `f-g,f+g,f*g,(f)/(g)` are defined in the domain (domain of f`nn` domain of g) `i.e., {2,5,8,10}nn{2,7,8,10,11} rArr {2,8,10}` (i) `(f-g)(2)=f(2)-g(2)=4-5=-1` `(f-g)(8)=f(8)-g(8)=-1-4=-5` `(f-g)(10)=f(10)-g(10)=-3-13=-16` `f-g={(2,-1),(8,-5),(10,-16)}` (ii) `(f+g) (2)=f(2)=f(2)+g(2)=4+5=9` `(f+g)(8)=f(8)+g(8)=-1+4=3` `(f+g)(10)=f(10)+g(10)=-3+13=10` `:. f-g={(2,9).(8,3),(10,10)}` (iii) `(f-g )(2)=f(2)*g(2)=4xx5=20` `(f*g)(8)=f(8)*(8)=-1xx4=-4` `(f*g)(10)=f(10)*g(10)=-3xx13=-39` `:. fg={(2,20),(8,-4),(10,-39)}` (iv) `((f)/(g))(2)=(f(2))/(g(2))=(4)/(5)` `((f)/(g))(8)=(f(8))/(g(8))=(-1)/(4)` `((f)/(g))(10)=(f(10))/(g(10))=(-3)/(13)` `:. (f)/(g)={(2,(4)/(d)),(8,-(1)/(4)),(10,(-3)/(13))}` Hence , the correct matches are `(i) rarr(c),(ii) rarr(d),(iii)rarr(b), (iv) rarr(a).`
Topper's Solved these Questions
RELATIONS AND FUNCTIONS
NCERT EXEMPLAR|Exercise True /False|5 Videos
RELATIONS AND FUNCTIONS
NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|12 Videos
PROBABILITY
NCERT EXEMPLAR|Exercise Matching The Columns|2 Videos
SEQUENCE AND SERIES
NCERT EXEMPLAR|Exercise Match the comumms|2 Videos
Similar Questions
Explore conceptually related problems
Let f={(1,6),(2,5),(4,3),(5,2),(8-1),(10,-3)} and g={(2,0),(3,2),(5,6),(7,10),(8,12),(10,16)} . Find (i) dom (f+g) (ii) dom ((f)/(g)) .
If f={(1,4),(2,5),(3,6)} and g={(4,8),(5,7),(6,9)} , then gof is
The functions f and g have the respective domains A and B. Hence the domain of f+g is
If f = {(1,4), (2,5),(3,5) and g ={(4,8),(5,7),(6,9)}, then gof is
Let f(x) be a function whose domain is [-5,7] and g(x) = |2x + 5| . Then, the domain of fog (x) is .
if f={(4,5),(5,6),(6,−4)}, g={(4,−4),(6,5),(8,5)} then find f+g
Domain of g(x)={x:x in domain of g(x) and g(x)in domain of f(x) and domain of fog(x) has atleast 3 elements )
Let f be a function with domain [-3, 5] and let g (x) = | 3x + 4 | , Then the domain of (fog) (x) is