Home
Class 11
MATHS
prove that n^(2)lt2^(n), for all natural...

prove that `n^(2)lt2^(n)`, for all natural number `n≥5`.

Text Solution

Verified by Experts

Consider the given statement
`P(n):n^(2)ltn^(n)` for all natural number `nle5`.
Step I We observe that P(5) is true `P(5):5^(2)lt2^(5)`
`=25lt32`
Hence, P(5) is ture.
Step II Now, assume that P(n) true for n=k.
`P(k)=k^(2)lt2^(k)` is true.
Step III Now, to prove P(k+1) is true, we have to show that
`P(k+1):(k+1)^(2)lt2^(k+1)`
Now, `k^(2)lt2^(k)=k^(2)+2k+1lt2^(k)+2k+1` . . . (i)
`=(k+1)^(2)lt2^(k)+2k+1`
Now, `(2k+1)lt2^(k) =2^(k)+2k+2lt2^(k)+2^(k)`
`=2^(k)+2k+1lt2*2^(k)`
`=2^(k)+2k+1lt2^(k=1)` . . . (ii)
Form Eqs. (i) and (ii), we get `(k+1)^(2)lt2^(k+1)`
So, P(k+1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction P(n) is true for all natural numbers `nle5`.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTION|9 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT EXEMPLAR|Exercise Matching The Columns|5 Videos
  • PROBABILITY

    NCERT EXEMPLAR|Exercise Matching The Columns|2 Videos

Similar Questions

Explore conceptually related problems

prove that 2nlt(n+2)! for all natural numbers n.

Prove that 2n +1 lt 2^(n) for all natural numbers n ge3

prove that 2+4+6+…2n=n^(2)+n , for all natural numbers n.

Prove that (1+x)^(n)>=(1+nx) for all natural number n,where x>-1

For a gt 01 , prove thjat (1+a)^(n) ge (1+an) for all natural numbers n.

Prove that 1+2+2^(2)+ . . .+2^(n)=2^(n+1)-1 , for all natural number n.

Prove that 7 is a factor of 2^(3n)-1 for all natural numbers n.

Show that ""^(n)P_(n)=""^(n)P_(n-1) for all natural numbers n.

Let x_(n)=(2^(n)+3^(n))^(1//2n) for all natural number n. Then