Home
Class 11
MATHS
Prove that 1/(n+1)+1/(n+2)+...+1/(2n)> 1...

Prove that `1/(n+1)+1/(n+2)+...+1/(2n)> 13/24` ,for all natural number `n>1`.

Text Solution

Verified by Experts

P(n) : `(1)/(n+1)+(1)/(n+2)+ . . .+(1)/(2n)gt(13)/(24)`, for all natural numbers `ngt1`.
Step I We observe that, P(2) is true,
`P(2):(1)/(2+1)+(1)/(2+2)gt(13)/(24).`
`(1)/(3)+(1)/(4)gt(13)/(24)`
`(4+3)/(12)gt(13)/(24)`
`(7)/(12)gt(13)/(24)` which is true
Step II Now, we assume that P(n) is true,
For n=k,
`P(k):(1)/(k+1)+(1)/(k+2)+ . . . +(1)/(2k)gt(13)/(24).`
Step III Now, to prove P(k+1) true we have to show that
`P(k+1):(1)/(k+1)+(1)/(k+2)+ . . . +(1)/(2k)+(1)/(2(k+1))gt(13)/(24)`
Given. `(1)/(k+1)+(1)/(k+2)+ . . . +(1)/(2k)gt(13)/(24)`
`(1)/(k+1)+(1)/(k+2)+ . . . +(1)/(2k)+(1)/(2(k+1))gt(13)/(24)+(1)/(2(k+1))`
`(13)/(24)+(1)/(2(k+1))gt(13)/(24)`
`because(1)/(k+1)+(1)/(k+2)+ . . . +(1)/(2k)+(1)/(2(k+1))gt(13)/(24)`
So, P(k+1) is true, whenever p(k) is true. Hence, P(n) is true.
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|5 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT EXEMPLAR|Exercise OBJECTIVE TYPE QUESTIONS|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT EXEMPLAR|Exercise Matching The Columns|5 Videos
  • PROBABILITY

    NCERT EXEMPLAR|Exercise Matching The Columns|2 Videos

Similar Questions

Explore conceptually related problems

Prove that 1+2+2^(2)+ . . .+2^(n)=2^(n+1)-1 , for all natural number n.

1+5+9+...+(4n-3)=n(2n-1) for all natural numbers n

For a gt 01 , prove thjat (1+a)^(n) ge (1+an) for all natural numbers n.

Let x_(n)=(2^(n)+3^(n))^(1//2n) for all natural number n. Then

Show that 10^(2n-1)+1 is divisible by 11 for all natural numbers n.

prove that 1+5+9+ . . .+(4n-3)=n(2n-1), for all natural number n.

Prove that 2n +1 lt 2^(n) for all natural numbers n ge3

Prove that (1+x)^(n)>=(1+nx) for all natural number n,where x>-1

Prove that log_(n)(n+1)>log_(n+1)(n+2) for any natural number n>1

prove that 3^(2n)-1 is divisible by 8, for all natural numbers n.