Home
Class 11
MATHS
If P(n):2nltn!,ninN then P(n) is true fo...

If `P(n):2nltn!,ninN` then P(n) is true for all `n≥` . . . . . . . . . .

Text Solution

Verified by Experts

Given that `P(n):2nltn!,ninN`
For n=1, `2lt!` [false]
For n=2, `2xx2lt!4lt2` [false]
For n=3, `2xx3lt!`
`6lt3!`
`6lt3xx2xx1`
`(6lt6)` [false]
For n=4, `2xx4lt4!`
`8lt4xx3xx2xx1`
`(8lt24)` [true]
`For n=5, 2xx5lt5!`
`10lt5xx4xx3xx2xx1`
`(10lt120)` [true]
Hence, P(n) is for all `nle4`. [true]
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT EXEMPLAR|Exercise LONG ANSWER TYPE QUESTION|9 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT EXEMPLAR|Exercise Matching The Columns|5 Videos
  • PROBABILITY

    NCERT EXEMPLAR|Exercise Matching The Columns|2 Videos

Similar Questions

Explore conceptually related problems

If 4^n/(n+1) lt ((2n)!)/((n!)^2) , then P(n) is true for

If (4^(n))/(n+1)lt((2n)!)/((n!)^(2)) then P(n) is true for

Let P(n) :n^(2)+n is even.Is P(1) is true?

If P(n,4)=12P(n,2) then value of n is

If P(n,4)=20P(n,2), find n

If P(n,5):P(n,3)=2:1 find n

Let P(n): n^(2)+n is odd, then P(n) Rightarrow P(n+1) for all n. and P(1) is not true. From here, we can conclude that