If `a_1,a_2,a_3, ,a_n`
are in A.P., where `a_i >0`
for all `i`
, show that
`1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot`
Text Solution
Verified by Experts
Since `a_(1) ,a_(2) ,a_(3)…a_(n) ` are in AP `implies a_(2) -a_(1) =a_(3)-a_(2) =.= a_(n) -a_(n-1)=d [ " common difference "]` if `A_(2)-a_(1)=d ` then `(sqrt(a_(2)))^(2) -(sqrt(a_(1)))^(2)=d` `implies (sqrt(a_(2))-sqrt(a_(1)))(sqrt(a_(2))+sqrt(a_(1))=d` `(1) /(sqrt(a_(1))+sqrt(a_(3))) =(sqrt(a_(2))-sqrt(a_(1)))/(d)` ` "Similarly ", (1) /(sqrt(a_(2))+sqrt(a_(3)))=(sqrt(a_(3))-sqrt(a_(2) ))/(d)` `{:(...,...,...),(...,...,...),(...,...,...):}` ` (1)/(sqrt(a_(n-1))+sqrt(a_(n)))=(sqrt(a_(n))sqrt(a_(n-1)))/(d)` On adding these terms we get `(1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))+....+ (1)/(sqrt(a_(n-1))+sqrt(a_(n)))` ` (1)/(d) [sqrt(a_(2))-sqrt(a_(1))+sqrt(a_(3))-sqrt(a_(2))+...+sqrt(a_(n))-sqrt(a_(n-1))]` ` =(1)/(d) [sqrt( a_(n)=-sqrt(a_(1))]` Again ` a_(n)a_(1)+(n-1)d` `implies a_(n)-a_(1)=(n-1)d` ` implies (sqrt(a_(n)))^(2) -(sqrt(_(1)))^(2)=(n-1)d` ` implies (sqrt(a_(n)))-sqrt(a_(1))(sqrt(a_(n))+sqrt(a))=(n-1)dimplies sqrt(a_(n))-sqrt(a_(1))=((n-1)d)/(sqrt(a_(n))+sqrt(a_(1)))` On puting this value in eq (i)we get `(1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))+...+ (1)/(sqrt(a_(n-1))+sqrt(a_(n)))` ` =((n-1)d)/(d(sqrta_(n)+sqrt(a_(1))))=(n-1)/(sqrt(a_(n))+sqrt(a_(1)))` hence proved .
Topper's Solved these Questions
SEQUENCE AND SERIES
NCERT EXEMPLAR|Exercise long answer type questions|4 Videos
SEQUENCE AND SERIES
NCERT EXEMPLAR|Exercise Objective type Question|10 Videos
RELATIONS AND FUNCTIONS
NCERT EXEMPLAR|Exercise True /False|5 Videos
SETS
NCERT EXEMPLAR|Exercise TRUE AND FALSE|6 Videos
Similar Questions
Explore conceptually related problems
If a_1,a_2,a_3,………a_n are in A.P, where a_igt0 for all i show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_2)+sqrt(a_3))+……..+1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))
If a_1,a_2,a_3,.....,a_n are in AP where a_i ne kpi for all i , prove that cosec a_1* cosec a_2+ cosec a_2* cosec a_3+...+ cosec a_(n-1)* cosec a_n=(cota_1-cota_n)/(sin(a_2-a_1)) .
If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_n))
If a_1,a_2,a_3,.....,a_n are in AP, prove that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n) .
If a_1,a_2,a_3,...,a_n are in AP and a_i ne (2k-1)pi/2 for all i , find the sum seca_1*seca_2+seca_2*seca_3+seca_3*seca_4+...+seca_(n-1)*seca_n .
"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""
If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.
If the nonzero numbers a_1,a_2,a_3,....,a_n are in AP, prove that 1/(a_1a_2a_3)+1/(a_2a_3a_4)+...+1/(a_(n-2)a_(n-1)a_n)=1/(2(a_2-a_1))(1/(a_1a_2)-1/(a_(n-1)a_n)) .
NCERT EXEMPLAR-SEQUENCE AND SERIES-Match the comumms