Home
Class 11
MATHS
If a1,a2,a3, ,an are in A.P., where ai >...

If `a_1,a_2,a_3, ,a_n` are in A.P., where `a_i >0` for all `i` , show that `1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_1)+sqrt(a_3))++1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot`

Text Solution

Verified by Experts

Since `a_(1) ,a_(2) ,a_(3)…a_(n) ` are in AP
`implies a_(2) -a_(1) =a_(3)-a_(2) =.= a_(n) -a_(n-1)=d [ " common difference "]`
if `A_(2)-a_(1)=d ` then `(sqrt(a_(2)))^(2) -(sqrt(a_(1)))^(2)=d`
`implies (sqrt(a_(2))-sqrt(a_(1)))(sqrt(a_(2))+sqrt(a_(1))=d`
`(1) /(sqrt(a_(1))+sqrt(a_(3))) =(sqrt(a_(2))-sqrt(a_(1)))/(d)`
` "Similarly ", (1) /(sqrt(a_(2))+sqrt(a_(3)))=(sqrt(a_(3))-sqrt(a_(2) ))/(d)`
`{:(...,...,...),(...,...,...),(...,...,...):}`
` (1)/(sqrt(a_(n-1))+sqrt(a_(n)))=(sqrt(a_(n))sqrt(a_(n-1)))/(d)`
On adding these terms we get
`(1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))+....+ (1)/(sqrt(a_(n-1))+sqrt(a_(n)))`
` (1)/(d) [sqrt(a_(2))-sqrt(a_(1))+sqrt(a_(3))-sqrt(a_(2))+...+sqrt(a_(n))-sqrt(a_(n-1))]`
` =(1)/(d) [sqrt( a_(n)=-sqrt(a_(1))]`
Again ` a_(n)a_(1)+(n-1)d`
`implies a_(n)-a_(1)=(n-1)d`
` implies (sqrt(a_(n)))^(2) -(sqrt(_(1)))^(2)=(n-1)d`
` implies (sqrt(a_(n)))-sqrt(a_(1))(sqrt(a_(n))+sqrt(a))=(n-1)dimplies sqrt(a_(n))-sqrt(a_(1))=((n-1)d)/(sqrt(a_(n))+sqrt(a_(1)))`
On puting this value in eq (i)we get
`(1)/(sqrt(a_(1))+sqrt(a_(2)))+(1)/(sqrt(a_(2))+sqrt(a_(3)))+...+ (1)/(sqrt(a_(n-1))+sqrt(a_(n)))`
` =((n-1)d)/(d(sqrta_(n)+sqrt(a_(1))))=(n-1)/(sqrt(a_(n))+sqrt(a_(1)))` hence proved .
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    NCERT EXEMPLAR|Exercise long answer type questions|4 Videos
  • SEQUENCE AND SERIES

    NCERT EXEMPLAR|Exercise Objective type Question|10 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR|Exercise True /False|5 Videos
  • SETS

    NCERT EXEMPLAR|Exercise TRUE AND FALSE|6 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,………a_n are in A.P, where a_igt0 for all i show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_2)+sqrt(a_3))+……..+1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))

If a_1,a_2,a_3,.....,a_n are in AP where a_i ne kpi for all i , prove that cosec a_1* cosec a_2+ cosec a_2* cosec a_3+...+ cosec a_(n-1)* cosec a_n=(cota_1-cota_n)/(sin(a_2-a_1)) .

If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_n))

If a_1,a_2,a_3,.....,a_n are in AP, prove that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n) .

If a_1,a_2,a_3,...,a_n are in AP and a_i ne (2k-1)pi/2 for all i , find the sum seca_1*seca_2+seca_2*seca_3+seca_3*seca_4+...+seca_(n-1)*seca_n .

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

If 1, a_1,a_2,a_3 ,…, a_(n-1) are the nth roots of unity then prove that : (1-a_1)(1-a_2)(1-a_3)...(1-a_(n-1)) =n.

If the nonzero numbers a_1,a_2,a_3,....,a_n are in AP, prove that 1/(a_1a_2a_3)+1/(a_2a_3a_4)+...+1/(a_(n-2)a_(n-1)a_n)=1/(2(a_2-a_1))(1/(a_1a_2)-1/(a_(n-1)a_n)) .