Home
Class 11
MATHS
If the p t h ,\ q t h\ a n d\ r t h term...

If the `p t h ,\ q t h\ a n d\ r t h` terms of `a` G.P. are `a ,\ b ,\ c` respectively, prove that: `a^((q-r))dot^(\ )b^((r-p))dotc^((p-q))=1.`

Text Solution

Verified by Experts

Let A , D are the first term and common difference difference of Ap and x, R are the first term and common ratio fo Gp respectively .
According to the given condition ,
`A+(p-1)d=2`…(i)
`A+(q-1) d=b`***(iii)
` A +(r-1) d=c`...(iii)
and `a=xR^(p-1)` ...(iv)
`b=xR^(p-1)` ...(v)
`c=xR^(p-1)` ***(vi)
On subtracting Eq,(ii) from Eq (i) we get
`d(p-1-q+1)=a-b`
`a-b=d(p-q)`***(vii)
On subtracting Eq,(iii) from Eq (ii) we get
`d(p-1-r+1)=b-c`
`implies b-c=d(q-r)` ...(viii)
On subtracting Eq,(i) from Eq (iii) we get
`d(r-1-p+1)=c-a`
`c-a=d (r-p)` ....(ix)
taking LHS `=a^(b-c) b^(c-a) c^(a-b)`
using Eqs (iv) ,(v) ,(vi) and (viii) , (ix)
`LHS =(xR^(p-1))^(d(q-r) )(xR^(q-1) ) ^(d(r-p) ) (xR^(r-1))^(d(p-q))`
`=x^(d(q-1)+d(r-p)+d(p-q))R^((p-1)d(q-r)+d(r-p)+(r-1)d(p-q))`
`=x^(d(q-r+r=p-p-q))`
`R^(d(pq-pr-q+r+qr- pq -r +p rp -rp-p+q))=x^(0)r^(0)=1`
=RHS Hence proved .
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    NCERT EXEMPLAR|Exercise Objective type Question|10 Videos
  • SEQUENCE AND SERIES

    NCERT EXEMPLAR|Exercise Fillers|3 Videos
  • SEQUENCE AND SERIES

    NCERT EXEMPLAR|Exercise Match the comumms|2 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR|Exercise True /False|5 Videos
  • SETS

    NCERT EXEMPLAR|Exercise TRUE AND FALSE|6 Videos

Similar Questions

Explore conceptually related problems

If the pth, qth and rth terms of a G.P.are a,b,c respectively,prove that: a^((q-r))C()b^((r-p))dot c^((p-q))=1

If the pth, qth and rth terms of a G.P. are a,b and c, respectively. Prove that a^(q-r)b^(r-p)c^(p-q)=1 .

If the p^(t h) ,q^(t h) and r^(t h) terms of a GP are a, b and c, respectively. Prove that a^(q-r)""b^(r-p)""c^(p-q)=1 .

If the pth,qth,rth terms of a G.P. be a,b,c ,c respectively,prove that a^(q-r)b^(r-p)c^(p-q)=1

If the p^(th),q^(th) and r^(th) terms of a H.P.are a,b,c respectively,then prove that (q-r)/(a)+(r-p)/(b)+(p-q)/(c)=0

The 5^(t h) , 8^(t h) and 11^(t h) terms of a G.P. are p, q and s, respectively. Show that q^2=p s .

If the p^(th), q^(th) and r^(th) terms of a G.P are a,b,c respectively then the value of a^(q-r).b^(r-p).c^(p-q)=

If the pth, qth and rth terms of an A.P. are a,b,c respectively , then the value of a(q-r) + b(r-p) + c(p-q) is :

If the p^(th), q^(th) and r^(th) terms of a H.P. are a,b,c respectively, then prove that (q - r)/(a) + (r - p)/(b) + (p - q)/(c) = 0

If pth,qth and rth terms of an A.P.are a,b,c respectively,then show that (i) a(q-r) +b(r- p) +c(p-q)=0