Home
Class 11
MATHS
Match the following . {:(,"ColumnI",,"...

Match the following .
`{:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(2) +3^(2) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}`

Text Solution

Verified by Experts

(i) `1^(2) +2^(2) +3^(2) +…+n^(2)`
Consider the identity `.(k+1)^(3)-K^(2)=3k^(2)+3k+1`
On putting k= 1,2,3…(n-1) ,n uccessively ,we get
`2^(3)-1^(3) =3.1^(2) +3.1+1`
`3^(3) -2^(3)=3.2^(2)+3.2+1`
`4^(3) -3^(3) +3.3+1`
`{:(...,...,...),(...,...,...):}`
`n^(3)-(n-1)^(3)=3.(n-1)^(2) +3.(n-1)+1`
` (n+1)^(3) -n^(3) =3.n+1`
Adding Columnwise .we get
`n^(3) +3n^(2) +3n=3(sum_(r=1)^(n) r^(2))+3(n(n+1))/(2) +n [ :' sum _(r-1)^(n) r^(2) =(n(n+1))/(2) ]`
` implies 3(sum_(r=1)^(n) r^(2))=n^(3) +3n^(2) 3n-(3n(n+1))/(2)+n`
`implies (sum _(r=1) ^(n) r^(2) )=(2n^(3)+3n^(2) +n)/(2) =(n(n+1)(2n+1))/(2)`
` implies sum _(r=1)^(n)r^(2) =(n(n+1))(2n+1))/(6) `
hence ` sum _(r=1)^(n)r^(2) =1^(2)+2^(2) +...+n^(2) =(n(n+1)(2n+1))/(6)`
(ii) `1^(3)+2^(3) +...+ n^(3)`
Consider the identity `(K+1)^(4)-k^(4)=4k^(3)+6k^(2)+4k+1 `
on putting `k=1,2,3,...(n-1)` n successively we get
`2^(4)-1^(4)=4.1^(3)+6.1^(2)+4.1+1`
`3^(4)-2^(4)=4.2^(3)+6.2^(2) +4.2+1`
`4^(4)-3^(4)=4.3^(3)+6.3^(2)+4.3+1`
`{:(...,...,...),(...,...,...):}`
`n^(4)-(n-1)^(4) +6(n-1)^(2) +4(n-1)+1`
`(n+1)^(4) -n^(4) =4.n^(3) +6.n^(2) +4.n+1`
Adding colurwise , we get
`(n+1)^(4) -1^(4) .(1^(3) +2^(3) +.....+n^(3) )+6(1^(2) +2^(2) +3^(3) +....+n^(2)) +4(1+2+3+....+n)+(1+1+...+1)` n terms
`implies n^(4) +4n^(3) +6n^(2) =4n=4(sum _(r=1)^(n) r^(3))+6(sum _(r=1)^(n) r^(2) ) +4(sum _(r=1)^nr) +n`
`implies n^(4)+4n^(3) +6n^(2) +4n=4(sum+(r=1)^(n)r^(3)) +6[(n(n+1)(2n+1))/(6)]+4[(n(n+1))/(2)]+n`
`implies sum _(r=1)^(n)r^(3)=(n^(2)(n+1)^(2)]/(4)`
`implies sum _(r=10)^(n) r^(3) =[(n(n+1))/(2)]^(2) =(sum _(r=1)^(n) r)^(2)`
hence ` sum _(r=1) ^(n) r^(3)=1^(3) +2^(3) +...+n^(3) =[(n(n+1))/(2)]^(2)=(sum_(r=1)^(n) r)^(2)`
(iii) `2+4+6+...+2n=2[1+2+3+...+n]`
`=2xx(n(n+1))/(2)=n+1)`
`s_(n) =1+2+3+...+n`
(iv) let `S_(n) 1+2+3+...+n`
Clearly it is an arithmetc series with first term ,a=1,
common difference , `d=1`
and last term = n
`S_(n) =(n)/(2) (1+n)=(n(n+1))/(2)`
hence `1+2+3+...+n=(n(n+1))/(2)`
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    NCERT EXEMPLAR|Exercise True / false|5 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR|Exercise True /False|5 Videos
  • SETS

    NCERT EXEMPLAR|Exercise TRUE AND FALSE|6 Videos

Similar Questions

Explore conceptually related problems

Prove that : 1^(2)+2^(2)+3^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)

1^(3)+2^(3)+3^(3)+.....+n^(3)=(n(n+1)^(2))/(4), n in N

1.3+2.4+3.5+....+n(n+2)=(n(n+1)(2n+7))/(6)

(1^(3)+2^(3)+...+n^(3))/(1+3+5+...+(2n-1))=((n+1)^( 2))/(4)

lim_ (n rarr oo n rarr oo) (1.n ^ (2) +2 (n-1) ^ (2) +3 (n-2) + ... + n.1 ^ (2)) / ( 1 ^ (3) + 2 ^ (3) + ... n ^ (3))

1+2.2+3.2^(2)+4.2^(3)+...+n*2^(n-1) = (i) 1+ (1+n) 2^(n) (ii) 1- (1+n) 2^(n) (iii) 1- (1-n) 2^(n) (iv) 1+ (1-n) 2^(n)

Prove the following by the principle of mathematical induction: 1^(2)+2^(2)+3^(2)++n^(2)=(n(n+1)(2n+1))/(6)

lim_ (n rarr oo) [(1+ (1) / (n ^ (2)))) (1+ (2 ^ (2)) / (n ^ (2))) (1+ (3 ^ (2) ) / (n ^ (2))) ...... (1+ (n ^ (2)) / (n ^ (2)))] ^ ((1) / (n))

1.2.3+2.3.4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4)