To solve the expression \(2\sqrt{3} + \sqrt{3}\), we can follow these steps:
### Step 1: Identify the common term
We notice that both terms in the expression \(2\sqrt{3}\) and \(\sqrt{3}\) have \(\sqrt{3}\) as a common factor.
### Step 2: Factor out \(\sqrt{3}\)
We can factor out \(\sqrt{3}\) from the expression:
\[
2\sqrt{3} + \sqrt{3} = (2 + 1)\sqrt{3}
\]
### Step 3: Simplify the expression inside the parentheses
Now, we simplify the expression inside the parentheses:
\[
(2 + 1)\sqrt{3} = 3\sqrt{3}
\]
### Step 4: Write the final answer
Thus, the value of \(2\sqrt{3} + \sqrt{3}\) is:
\[
3\sqrt{3}
\]
### Summary of the Solution
The final answer is \(3\sqrt{3}\).
---
Topper's Solved these Questions
NUMBER SYSTEMS
NCERT EXEMPLAR|Exercise SHORT ANSWER TYPE QUESTIONS|1 Videos
LINES AND ANGLES
NCERT EXEMPLAR|Exercise Lines And Angles|34 Videos
POLYNOMIALS
NCERT EXEMPLAR|Exercise Polynomials|72 Videos
Similar Questions
Explore conceptually related problems
If sqrt(6) =2.55 , then the value of sqrt(2/3) + sqrt(3/2) is:
The value of 5sqrt(3) + 7sqrt(2) - sqrt(6) - 23/(sqrt(2) + sqrt(3) + sqrt(6)) is:
The value of sqrt(2 + sqrt(3)) + sqrt(2 - sqrt(3)) is
If sqrt(2) = 1.414, sqrt(3) = 1.732, sqrt(5) = 2.236 and sqrt(6) = 2.449 , find the value of (2+sqrt(3))/(2-sqrt(3)) +(2-sqrt(3))/(2+sqrt(3)) +(sqrt(3) -1)/(sqrt(3) +1)
The value of sqrt(3-2sqrt(2)) is sqrt(2)-1(b)sqrt(2)+1(c)sqrt(3)-sqrt(2)(d)sqrt(3)+sqrt(2)
NCERT EXEMPLAR-NUMBER SYSTEMS-SHORT ANSWER TYPE QUESTIONS