Home
Class 9
MATHS
1/(sqrt(9)-\ sqrt(8)) is equal?...

`1/(sqrt(9)-\ sqrt(8))` is equal?

A

`1/2 (3-2sqrt(2))`

B

`1/(3+2sqrt(2))`

C

`3-2sqrt(2)`

D

`3+2sqrt(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

`(1)/(sqrt(9) - sqrt(8)) = (1)/(3-2sqrt(2)) = (1)/(3-2sqrt(2)) . (3+2sqrt(2))/(3+2sqrt(2)) , [:' sqrt(8) = sqrt(2 xx 2 xx 2) = 2 sqrt(2)]`
[multilplying numerator and denominator by `3+2sqrt(2)`]
`= (3+2sqrt(2))/(9-(2sqrt(2))^(2))` , [using identify `(a-b)(a+b) = a^(2) - b^(2)`]
`= (3+2sqrt(2))/(9-8) = 3+2sqrt(2)`
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    NCERT EXEMPLAR|Exercise SHORT ANSWER TYPE QUESTIONS|1 Videos
  • LINES AND ANGLES

    NCERT EXEMPLAR|Exercise Lines And Angles|34 Videos
  • POLYNOMIALS

    NCERT EXEMPLAR|Exercise Polynomials|72 Videos

Similar Questions

Explore conceptually related problems

sqrt(6) xx sqrt(8) is equal to

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

sqrt(6-4sqrt(3)+sqrt(16-8sqrt(3))) is equal to 1-sqrt(3) b.sqrt(3)-1 c.2(2-sqrt(3)) d.2(2+sqrt(3))

(6^2+7^2+8^2+9^2+10^2)/(sqrt(7+4sqrt3)- sqrt(4+2sqrt3)) is equal to/ किसके बराबर है?

If x = "log"_(0.1) 0.001, y = "log"_(9) 81 , then sqrt(x - 2sqrt(y)) is equal to