The product `root3(2).root4(2). root12(32)` equal to
A
`sqrt2`
B
2
C
`root12(2)`
D
`root12(32)`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the expression \( \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} \), we will use the properties of exponents and roots.
### Step 1: Rewrite the roots in exponent form
We can express the roots in terms of exponents:
- \( \sqrt[3]{2} = 2^{1/3} \)
- \( \sqrt[4]{2} = 2^{1/4} \)
- \( \sqrt[12]{32} = \sqrt[12]{2^5} = (2^5)^{1/12} = 2^{5/12} \)
### Step 2: Combine the exponents
Now we can combine these exponents:
\[
\sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} = 2^{1/3} \cdot 2^{1/4} \cdot 2^{5/12}
\]
Using the property of exponents that states \( a^m \cdot a^n = a^{m+n} \), we can add the exponents:
\[
= 2^{(1/3 + 1/4 + 5/12)}
\]
### Step 3: Find a common denominator
To add the fractions \( \frac{1}{3} \), \( \frac{1}{4} \), and \( \frac{5}{12} \), we need a common denominator. The least common multiple of 3, 4, and 12 is 12.
Convert each fraction:
- \( \frac{1}{3} = \frac{4}{12} \)
- \( \frac{1}{4} = \frac{3}{12} \)
- \( \frac{5}{12} = \frac{5}{12} \)
Now we can add them:
\[
\frac{4}{12} + \frac{3}{12} + \frac{5}{12} = \frac{4 + 3 + 5}{12} = \frac{12}{12} = 1
\]
### Step 4: Substitute back into the exponent
Now we substitute back into the exponent:
\[
2^{(1/3 + 1/4 + 5/12)} = 2^{1}
\]
### Step 5: Final answer
Thus, the product \( \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} \) equals:
\[
\boxed{2}
\]
To solve the expression \( \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} \), we will use the properties of exponents and roots.
### Step 1: Rewrite the roots in exponent form
We can express the roots in terms of exponents:
- \( \sqrt[3]{2} = 2^{1/3} \)
- \( \sqrt[4]{2} = 2^{1/4} \)
- \( \sqrt[12]{32} = \sqrt[12]{2^5} = (2^5)^{1/12} = 2^{5/12} \)
...
Topper's Solved these Questions
NUMBER SYSTEMS
NCERT EXEMPLAR|Exercise SHORT ANSWER TYPE QUESTIONS|1 Videos
LINES AND ANGLES
NCERT EXEMPLAR|Exercise Lines And Angles|34 Videos
POLYNOMIALS
NCERT EXEMPLAR|Exercise Polynomials|72 Videos
Similar Questions
Explore conceptually related problems
root(3)(2) . root(4)(2) . root(12)(32)
root4(root3(2^(2))) equal to
Find the product: root(3)(2)xx root(4)(3)
root3(144) xx root3(12) equals
root(4)(root(3)(3^2))
root(5)(root(4)(3^2))
root (4) (root(3)(2^2))
NCERT EXEMPLAR-NUMBER SYSTEMS-SHORT ANSWER TYPE QUESTIONS