Home
Class 9
MATHS
The product root3(2).root4(2). root12(32...

The product `root3(2).root4(2). root12(32)` equal to

A

`sqrt2`

B

2

C

`root12(2)`

D

`root12(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} \), we will use the properties of exponents and roots. ### Step 1: Rewrite the roots in exponent form We can express the roots in terms of exponents: - \( \sqrt[3]{2} = 2^{1/3} \) - \( \sqrt[4]{2} = 2^{1/4} \) - \( \sqrt[12]{32} = \sqrt[12]{2^5} = (2^5)^{1/12} = 2^{5/12} \) ### Step 2: Combine the exponents Now we can combine these exponents: \[ \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} = 2^{1/3} \cdot 2^{1/4} \cdot 2^{5/12} \] Using the property of exponents that states \( a^m \cdot a^n = a^{m+n} \), we can add the exponents: \[ = 2^{(1/3 + 1/4 + 5/12)} \] ### Step 3: Find a common denominator To add the fractions \( \frac{1}{3} \), \( \frac{1}{4} \), and \( \frac{5}{12} \), we need a common denominator. The least common multiple of 3, 4, and 12 is 12. Convert each fraction: - \( \frac{1}{3} = \frac{4}{12} \) - \( \frac{1}{4} = \frac{3}{12} \) - \( \frac{5}{12} = \frac{5}{12} \) Now we can add them: \[ \frac{4}{12} + \frac{3}{12} + \frac{5}{12} = \frac{4 + 3 + 5}{12} = \frac{12}{12} = 1 \] ### Step 4: Substitute back into the exponent Now we substitute back into the exponent: \[ 2^{(1/3 + 1/4 + 5/12)} = 2^{1} \] ### Step 5: Final answer Thus, the product \( \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} \) equals: \[ \boxed{2} \]

To solve the expression \( \sqrt[3]{2} \cdot \sqrt[4]{2} \cdot \sqrt[12]{32} \), we will use the properties of exponents and roots. ### Step 1: Rewrite the roots in exponent form We can express the roots in terms of exponents: - \( \sqrt[3]{2} = 2^{1/3} \) - \( \sqrt[4]{2} = 2^{1/4} \) - \( \sqrt[12]{32} = \sqrt[12]{2^5} = (2^5)^{1/12} = 2^{5/12} \) ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    NCERT EXEMPLAR|Exercise SHORT ANSWER TYPE QUESTIONS|1 Videos
  • LINES AND ANGLES

    NCERT EXEMPLAR|Exercise Lines And Angles|34 Videos
  • POLYNOMIALS

    NCERT EXEMPLAR|Exercise Polynomials|72 Videos

Similar Questions

Explore conceptually related problems

root(3)(2) . root(4)(2) . root(12)(32)

root4(root3(2^(2))) equal to

Find the product: root(3)(2)xx root(4)(3)

root3(144) xx root3(12) equals

root(4)(root(3)(3^2))

root(5)(root(4)(3^2))

root (4) (root(3)(2^2))