Home
Class 9
MATHS
The value of root 4((81)^(-2)) is...

The value of `root 4((81)^(-2))` is

A

`1/9`

B

`1/3`

C

9

D

`-1/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[4]{(81)^{-2}} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt[4]{(81)^{-2}} \] ### Step 2: Apply the exponent property Using the property of exponents that states \( a^{-n} = \frac{1}{a^n} \), we can rewrite \( (81)^{-2} \) as: \[ \sqrt[4]{\frac{1}{(81)^2}} \] ### Step 3: Simplify the expression Now we can simplify the expression further: \[ \sqrt[4]{\frac{1}{(81)^2}} = \frac{1}{\sqrt[4]{(81)^2}} \] ### Step 4: Calculate \( (81)^2 \) Calculating \( (81)^2 \): \[ (81)^2 = 6561 \] So, we have: \[ \frac{1}{\sqrt[4]{6561}} \] ### Step 5: Find \( \sqrt[4]{6561} \) Next, we need to find \( \sqrt[4]{6561} \). We can express 6561 as \( 81^{2} \) or \( (3^4)^{2} = 3^8 \). Therefore: \[ \sqrt[4]{6561} = \sqrt[4]{3^8} = 3^{8/4} = 3^2 = 9 \] ### Step 6: Final calculation Now, substituting back, we get: \[ \frac{1}{\sqrt[4]{6561}} = \frac{1}{9} \] ### Final Answer Thus, the value of \( \sqrt[4]{(81)^{-2}} \) is: \[ \frac{1}{9} \] ---

To solve the expression \( \sqrt[4]{(81)^{-2}} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt[4]{(81)^{-2}} \] ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    NCERT EXEMPLAR|Exercise SHORT ANSWER TYPE QUESTIONS|1 Videos
  • LINES AND ANGLES

    NCERT EXEMPLAR|Exercise Lines And Angles|34 Videos
  • POLYNOMIALS

    NCERT EXEMPLAR|Exercise Polynomials|72 Videos

Similar Questions

Explore conceptually related problems

Find the value of root(4)((36)^(-2))

The value of ((32)/(243))^(-4/5) is a.(4)/(9) b.(9)/(4) c.(16)/(81) d.(81)/(16)

Find the value of : root(4)(-64) .

((81)^(-2))^(1/4)=

The value of [{(81)^(-1/2)}^(-1/4)]^2