To solve the expression \( \sqrt[4]{(81)^{-2}} \), we can follow these steps:
### Step 1: Rewrite the expression
We start with the expression:
\[
\sqrt[4]{(81)^{-2}}
\]
### Step 2: Apply the exponent property
Using the property of exponents that states \( a^{-n} = \frac{1}{a^n} \), we can rewrite \( (81)^{-2} \) as:
\[
\sqrt[4]{\frac{1}{(81)^2}}
\]
### Step 3: Simplify the expression
Now we can simplify the expression further:
\[
\sqrt[4]{\frac{1}{(81)^2}} = \frac{1}{\sqrt[4]{(81)^2}}
\]
### Step 4: Calculate \( (81)^2 \)
Calculating \( (81)^2 \):
\[
(81)^2 = 6561
\]
So, we have:
\[
\frac{1}{\sqrt[4]{6561}}
\]
### Step 5: Find \( \sqrt[4]{6561} \)
Next, we need to find \( \sqrt[4]{6561} \). We can express 6561 as \( 81^{2} \) or \( (3^4)^{2} = 3^8 \). Therefore:
\[
\sqrt[4]{6561} = \sqrt[4]{3^8} = 3^{8/4} = 3^2 = 9
\]
### Step 6: Final calculation
Now, substituting back, we get:
\[
\frac{1}{\sqrt[4]{6561}} = \frac{1}{9}
\]
### Final Answer
Thus, the value of \( \sqrt[4]{(81)^{-2}} \) is:
\[
\frac{1}{9}
\]
---
To solve the expression \( \sqrt[4]{(81)^{-2}} \), we can follow these steps:
### Step 1: Rewrite the expression
We start with the expression:
\[
\sqrt[4]{(81)^{-2}}
\]
...
Topper's Solved these Questions
NUMBER SYSTEMS
NCERT EXEMPLAR|Exercise SHORT ANSWER TYPE QUESTIONS|1 Videos
LINES AND ANGLES
NCERT EXEMPLAR|Exercise Lines And Angles|34 Videos
POLYNOMIALS
NCERT EXEMPLAR|Exercise Polynomials|72 Videos
Similar Questions
Explore conceptually related problems
Find the value of root(4)((36)^(-2))
The value of ((32)/(243))^(-4/5) is a.(4)/(9) b.(9)/(4) c.(16)/(81) d.(81)/(16)
Find the value of : root(4)(-64) .
((81)^(-2))^(1/4)=
The value of [{(81)^(-1/2)}^(-1/4)]^2
NCERT EXEMPLAR-NUMBER SYSTEMS-SHORT ANSWER TYPE QUESTIONS