If `a=(3+sqrt5)/2` then find the vaule of `a^(2)+1/(a^(2))`
A
5
B
6
C
7
D
8
Text Solution
AI Generated Solution
The correct Answer is:
To find the value of \( a^2 + \frac{1}{a^2} \) where \( a = \frac{3 + \sqrt{5}}{2} \), we can follow these steps:
### Step 1: Calculate \( a^2 \)
First, we need to calculate \( a^2 \):
\[
a^2 = \left( \frac{3 + \sqrt{5}}{2} \right)^2
\]
Using the formula \( (x+y)^2 = x^2 + 2xy + y^2 \):
\[
a^2 = \frac{(3 + \sqrt{5})^2}{2^2} = \frac{9 + 6\sqrt{5} + 5}{4} = \frac{14 + 6\sqrt{5}}{4} = \frac{7 + 3\sqrt{5}}{2}
\]
### Step 2: Calculate \( \frac{1}{a} \)
Next, we find \( \frac{1}{a} \):
\[
\frac{1}{a} = \frac{2}{3 + \sqrt{5}}
\]
To rationalize the denominator, multiply the numerator and the denominator by \( 3 - \sqrt{5} \):
\[
\frac{1}{a} = \frac{2(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})} = \frac{2(3 - \sqrt{5})}{9 - 5} = \frac{2(3 - \sqrt{5})}{4} = \frac{3 - \sqrt{5}}{2}
\]
### Step 3: Calculate \( \frac{1}{a^2} \)
Now, we calculate \( \frac{1}{a^2} \):
\[
\frac{1}{a^2} = \left( \frac{1}{a} \right)^2 = \left( \frac{3 - \sqrt{5}}{2} \right)^2 = \frac{(3 - \sqrt{5})^2}{4}
\]
Using the formula \( (x-y)^2 = x^2 - 2xy + y^2 \):
\[
\frac{1}{a^2} = \frac{9 - 6\sqrt{5} + 5}{4} = \frac{14 - 6\sqrt{5}}{4} = \frac{7 - 3\sqrt{5}}{2}
\]
### Step 4: Calculate \( a^2 + \frac{1}{a^2} \)
Now, we can find \( a^2 + \frac{1}{a^2} \):
\[
a^2 + \frac{1}{a^2} = \frac{7 + 3\sqrt{5}}{2} + \frac{7 - 3\sqrt{5}}{2}
\]
Combining the fractions:
\[
a^2 + \frac{1}{a^2} = \frac{(7 + 3\sqrt{5}) + (7 - 3\sqrt{5})}{2} = \frac{14}{2} = 7
\]
### Final Answer
Thus, the value of \( a^2 + \frac{1}{a^2} \) is \( 7 \).
---
To find the value of \( a^2 + \frac{1}{a^2} \) where \( a = \frac{3 + \sqrt{5}}{2} \), we can follow these steps:
### Step 1: Calculate \( a^2 \)
First, we need to calculate \( a^2 \):
\[
a^2 = \left( \frac{3 + \sqrt{5}}{2} \right)^2
...
Topper's Solved these Questions
NUMBER SYSTEMS
NCERT EXEMPLAR|Exercise SHORT ANSWER TYPE QUESTIONS|1 Videos
LINES AND ANGLES
NCERT EXEMPLAR|Exercise Lines And Angles|34 Videos
POLYNOMIALS
NCERT EXEMPLAR|Exercise Polynomials|72 Videos
Similar Questions
Explore conceptually related problems
If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .
If p = (3-sqrt(5))/(3+sqrt(5)) and q = (3+sqrt5)/(3-sqrt(5)) ,find the value of p^(2) + q^(2) .
If a=(3-sqrt(5))/(3+sqrt(5)) and b=(3+sqrt(5))/(3-sqrt(5)) ,find the value of a^(2)+b^(2)
If x=(1)/(sqrt(5)-2) , find the value of x^(3)-3x^(2)-5x+3 .
Given that sqrt(3)=1.732 and sqrt(5)=2.236 then find the value of ((6)/(sqrt(5)-sqrt(3))) .
If x=(sqrt(5)+1)/(sqrt(5)-1) and y=(sqrt(5)-1)/(sqrt(5)+1) find the value of x^(2)+y^(2)
If x=(sqrt5+sqrt2)/(sqrt5-sqrt2) and y=(sqrt5-sqrt2)/(sqrt5+sqrt2) then find the value of (3x-2y)(x+2y)
Given sqrt(2)=1.414,sqrt(3)=1.732,sqrt(5)=2.236,sqrt(6)=2.440 and sqrt(10)=3.162 Then find the value of (sqrt(2)-1)/(sqrt(3)-sqrt(5)) upto three decimal places
NCERT EXEMPLAR-NUMBER SYSTEMS-SHORT ANSWER TYPE QUESTIONS