Home
Class 9
MATHS
If a=(3+sqrt5)/2 then find the vaule of ...

If `a=(3+sqrt5)/2` then find the vaule of `a^(2)+1/(a^(2))`

A

5

B

6

C

7

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^2 + \frac{1}{a^2} \) where \( a = \frac{3 + \sqrt{5}}{2} \), we can follow these steps: ### Step 1: Calculate \( a^2 \) First, we need to calculate \( a^2 \): \[ a^2 = \left( \frac{3 + \sqrt{5}}{2} \right)^2 \] Using the formula \( (x+y)^2 = x^2 + 2xy + y^2 \): \[ a^2 = \frac{(3 + \sqrt{5})^2}{2^2} = \frac{9 + 6\sqrt{5} + 5}{4} = \frac{14 + 6\sqrt{5}}{4} = \frac{7 + 3\sqrt{5}}{2} \] ### Step 2: Calculate \( \frac{1}{a} \) Next, we find \( \frac{1}{a} \): \[ \frac{1}{a} = \frac{2}{3 + \sqrt{5}} \] To rationalize the denominator, multiply the numerator and the denominator by \( 3 - \sqrt{5} \): \[ \frac{1}{a} = \frac{2(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})} = \frac{2(3 - \sqrt{5})}{9 - 5} = \frac{2(3 - \sqrt{5})}{4} = \frac{3 - \sqrt{5}}{2} \] ### Step 3: Calculate \( \frac{1}{a^2} \) Now, we calculate \( \frac{1}{a^2} \): \[ \frac{1}{a^2} = \left( \frac{1}{a} \right)^2 = \left( \frac{3 - \sqrt{5}}{2} \right)^2 = \frac{(3 - \sqrt{5})^2}{4} \] Using the formula \( (x-y)^2 = x^2 - 2xy + y^2 \): \[ \frac{1}{a^2} = \frac{9 - 6\sqrt{5} + 5}{4} = \frac{14 - 6\sqrt{5}}{4} = \frac{7 - 3\sqrt{5}}{2} \] ### Step 4: Calculate \( a^2 + \frac{1}{a^2} \) Now, we can find \( a^2 + \frac{1}{a^2} \): \[ a^2 + \frac{1}{a^2} = \frac{7 + 3\sqrt{5}}{2} + \frac{7 - 3\sqrt{5}}{2} \] Combining the fractions: \[ a^2 + \frac{1}{a^2} = \frac{(7 + 3\sqrt{5}) + (7 - 3\sqrt{5})}{2} = \frac{14}{2} = 7 \] ### Final Answer Thus, the value of \( a^2 + \frac{1}{a^2} \) is \( 7 \). ---

To find the value of \( a^2 + \frac{1}{a^2} \) where \( a = \frac{3 + \sqrt{5}}{2} \), we can follow these steps: ### Step 1: Calculate \( a^2 \) First, we need to calculate \( a^2 \): \[ a^2 = \left( \frac{3 + \sqrt{5}}{2} \right)^2 ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEMS

    NCERT EXEMPLAR|Exercise SHORT ANSWER TYPE QUESTIONS|1 Videos
  • LINES AND ANGLES

    NCERT EXEMPLAR|Exercise Lines And Angles|34 Videos
  • POLYNOMIALS

    NCERT EXEMPLAR|Exercise Polynomials|72 Videos

Similar Questions

Explore conceptually related problems

If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .

If p = (3-sqrt(5))/(3+sqrt(5)) and q = (3+sqrt5)/(3-sqrt(5)) ,find the value of p^(2) + q^(2) .

If a=(3-sqrt(5))/(3+sqrt(5)) and b=(3+sqrt(5))/(3-sqrt(5)) ,find the value of a^(2)+b^(2)

If x=(1)/(sqrt(5)-2) , find the value of x^(3)-3x^(2)-5x+3 .

Given that sqrt(3)=1.732 and sqrt(5)=2.236 then find the value of ((6)/(sqrt(5)-sqrt(3))) .

If x=(sqrt(5)+1)/(sqrt(5)-1) and y=(sqrt(5)-1)/(sqrt(5)+1) find the value of x^(2)+y^(2)

If x=(sqrt5+sqrt2)/(sqrt5-sqrt2) and y=(sqrt5-sqrt2)/(sqrt5+sqrt2) then find the value of (3x-2y)(x+2y)

Given sqrt(2)=1.414,sqrt(3)=1.732,sqrt(5)=2.236,sqrt(6)=2.440 and sqrt(10)=3.162 Then find the value of (sqrt(2)-1)/(sqrt(3)-sqrt(5)) upto three decimal places