Home
Class 9
MATHS
If P(x) =x+3, then p(x)+p(-x) is equal...

If `P(x) =x+3,` then `p(x)+p(-x) ` is equal to

A

3

B

2x

C

zero

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( P(x) + P(-x) \) given that \( P(x) = x + 3 \). ### Step-by-Step Solution: 1. **Identify \( P(x) \)**: We are given that \( P(x) = x + 3 \). 2. **Find \( P(-x) \)**: To find \( P(-x) \), we substitute \(-x\) into the polynomial \( P(x) \): \[ P(-x) = -x + 3 \] 3. **Add \( P(x) \) and \( P(-x) \)**: Now we need to compute \( P(x) + P(-x) \): \[ P(x) + P(-x) = (x + 3) + (-x + 3) \] 4. **Simplify the Expression**: Combine like terms: \[ P(x) + P(-x) = x + 3 - x + 3 \] The \( x \) and \(-x\) cancel each other out: \[ = 3 + 3 = 6 \] 5. **Final Answer**: Therefore, \( P(x) + P(-x) = 6 \).

To solve the problem, we need to find the value of \( P(x) + P(-x) \) given that \( P(x) = x + 3 \). ### Step-by-Step Solution: 1. **Identify \( P(x) \)**: We are given that \( P(x) = x + 3 \). 2. **Find \( P(-x) \)**: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NUMBER SYSTEMS

    NCERT EXEMPLAR|Exercise SHORT ANSWER TYPE QUESTIONS|1 Videos
  • QUADRILATERALS

    NCERT EXEMPLAR|Exercise Quadrilaterals|56 Videos

Similar Questions

Explore conceptually related problems

If p(x)=x+9 then find p(x)+p(-x).

If f(x ) = a^x , then [ f(p) ]^3 is equal to

Knowledge Check

  • If p(x)=x+4 then p(x)+p(-x)= ?

    A
    `0`
    B
    `4`
    C
    `2x`
    D
    `8`
  • If p(x)=5x-4x^(2)+3 then p (-1)= ?

    A
    `2`
    B
    `-2`
    C
    `6`
    D
    `-6`
  • If x = 2 - p , then x^(3) + 6xp + p^(3) is equal to :

    A
    12
    B
    6
    C
    8
    D
    4
  • Similar Questions

    Explore conceptually related problems

    If p(x)=x^(3) then find p(0)

    If phi(x)=a^(x), then [phi(p)]^(3) is equal to:

    If x = 2 - p , then x^3+6xp+p^3 , is equal to: यदि x = 2 - p है, तो x^3+6xp+p^3 का मान क्या होगा ?

    If X be a random variable taking values x_(1),x_(2),x_(3),….,x_(n) with probabilities P_(1),P_(2),P_(3) ,….. P_(n) , respectively. Then, Var (x) is equal to …….. .

    If p = x^(1//3) + x^(-1//3), then p^3 - 3p is equal to :