Home
Class 12
MATHS
|(0,ab,ac),(ba,0,bc),(ca,cb,0)|=2a^2b^2c...

`|(0,ab,ac),(ba,0,bc),(ca,cb,0)|=2a^2b^2c^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2):}|=4a^2b^2c^2

Using properties of determinants, prove that |(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)|=4a^2 b^2 c^2

Using properties of determinants, prove that |(-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)|=4a^2 b^2 c^2

Prove that, abs((-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)) =4 a^2b^2c^2 .

Prove that |(-a^2,ab,ac),(bc,-b^2,bc),(ca,cb,-c^2)|=4a^(2)b^(2) c^(2) .

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Show that |(0,a,c),(a,0,b),(c,b,0)|^(2)=|(2ac,ab,bc),(ab,-a^(2),-ac+b^(2)),(bc,-ac+b^(2),-c^(2))|

By using properties of determinants, prove that |[-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2