Home
Class 10
MATHS
Prove the following identities: (cos^2t...

Prove the following identities: `(cos^2theta)/(1-tantheta)+(sin^3theta)/(sintheta-costheta)=1+sinthetacostheta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=1+sinthetacostheta

Prove that : (cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=1+sinthetacostheta

Prove : (cos^2theta)/(1-tan theta) + (sin^3theta)/(sintheta - cos theta) = 1 + sin theta cos theta

Prove the following (cos^2theta) /(1-tantheta) +sin^3theta/(sintheta-costheta) =1+sinthetacostheta

If (cos^(2)theta)/(1-tantheta)+(sin^(3)theta)/(sintheta-costheta)=K+sinthetacostheta , then K = ?

Prove the following identities: (sin^3theta+cos^3theta)/(sintheta+costheta)+sinthetacostheta=1

Prove (sin^3theta+cos^3theta)/(sintheta+costheta)=1-sinthetacostheta

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

Prove the following trigonometric identities: cottheta-tantheta=(2cos^2theta-1)/(sinthetacostheta)

Prove the following trigonometric identities: cottheta-tantheta=(2cos^2theta-1)/(sinthetacostheta)