Home
Class 11
MATHS
Let f(x)=(x+1)(x+2)(x+3)(x+4)(x+5) and f...

Let `f(x)=(x+1)(x+2)(x+3)(x+4)(x+5) and f'(0)` is given as `f^(prime)(0)=f(0){1+1/(k_1)+1/(k_2)+1/(k_3)+1/(k_4)}` then `k_1+k_2+k_3-k_4=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int e^(x^(2))(x-2)(x-3)(x-4)dx then f increases on (k,k+1) then k is

Let f_K(x)""=1/k(s in^k x+cos^k x) where x in R and kgeq1 . Then f_4(x)-f_6(x) equals (1) 1/6 (2) 1/3 (3) 1/4 (4) 1/(12)

Let f_K(x)""=1/k(s in^k x+cos^k x) where x in R and kgeq1 . Then f_4(x)-f_6(x) equals (1) 1/6 (2) 1/3 (3) 1/4 (4) 1/(12)

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

Let f_k(x)=1/k(sin^k x+cos^k x) Then f_4(x)-f_6(x) =

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and k ge1 , then f_(4)(x)-f_(6)(x) equals

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and k>=1. Then f_(4)(x)-f_(6)(x) equals

Let f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) where x in R and kge1 then f_(4)(x)-f_(6)(x) equals

If f_(k)(x)=(1)/(k)(sin^(k)x+cos^(k)x) then f_(4)(x)-f_(6)(x)=(A)(1)/(12) (B) (5)/(12) (C) (-1)/(12) (D) -(5)/(12)