Home
Class 12
MATHS
lim(n rarr oo)(sqrt(n+1)+sqrt(n+2)+...+s...

lim_(n rarr oo)(sqrt(n+1)+sqrt(n+2)+...+sqrt(n+n))/(n sqrt(n))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

Evaluate the limit. lim_(n to oo) (sqrt(n+1)+sqrt(n+2)+……..+ sqrt(n+n))/(nsqrt(n))

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

The value of lim_(n rarr oo)(sqrt(1)+sqrt(2)+sqrt(3)+....+2sqrt(n))/(n sqrt(n)) is