Home
Class 11
MATHS
If y=log(secx+tanx), then dy/dx=...

If `y=log(secx+tanx)`, then `dy/dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the following statements: 1. If y=ln(secx+tanx), then (dy)/(dx)=secx. 2. If y=ln("cosecx-cotx) , then (dy)/(dx)="cosec x". Which of the above is/are correct?

Consider the following statements I. If y=ln(secx+tanx) . then (dy)/(dx)=secx II. If y=ln("cosec"x-cotx) . then (dy)/(dx)="cosec"x Which of the above statements is/are correct ?

If y=secx*tanx then dy/dx=

If y= log (secx+tan x ) ,then (dy)/(dx)

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(pi)/(4) is equal to

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(pi)/(4) is equal to

If y=log(tanx),"then "dy/dx is :

if y=log_(sinx) tanx then ((dy)/(dx)) _(pi/4) is