Home
Class 12
MATHS
log t int[(sqrt(1+x)+sqrt(1-x))/(2)]=(pi...

log t int[(sqrt(1+x)+sqrt(1-x))/(2)]=(pi)/(4)-(1)/(2)cos^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x+sqrt(1-x)))]=(pi)/(4)-(1)/(2)cos^(-1)x,quad -(1)/(sqrt(2))<=x<=1

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=(pi)/(4)+(1)/(2)cos^(-1)x^(2)

Prove that tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2) .

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x =1/(sqrt(2))ltxle1

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x,-1/(sqrt(2))ltxle1

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x,-1/(sqrt(2))ltxle1

Prove that "tan"^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=pi/(4)+1/(2)"cos"^(-1)x^(2) .