Home
Class 12
MATHS
If f is a real function such that f(x)>0...

If `f` is a real function such that `f(x)>0,f^(prime)(xx)` is continuous for all real `xa n da xf^(prime)(x)geq2sqrt(f(x))-2af(x),(a x!=2),` show that `sqrt(f(x))geq(sqrt(f(1)))/x ,xgeq1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f is a real function such that f(x) > 0,f^(prime)(x) is continuous for all real x and a xf^(prime)(x)geq2sqrt(f(x))-2af(x),(a x!=2), show that sqrt(f(x))geq(sqrt(f(1)))/x ,xgeq1 .

If f is a real function such that f(x) > 0,f^(prime)(x) is continuous for all real x and a xf^(prime)(x)geq2sqrt(f(x))-2af(x),(a x!=2), show that sqrt(f(x))geq(sqrt(f(1)))/x ,xgeq1 .

If f is a real function such that f(x)>0,f'(xx) is continuous for all real x and axf'(x)>=2sqrt(f(x))-2af(x),(ax!=2) show that sqrt(f(x))>=(sqrt(f(1)))/(x),x>=1

Prove that f(x)=sqrt(|x|-x) is continuous for all xgeq0.

Prove that f(x)=sqrt(|x|-x) is continuous for all xgeq0 .

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,

If f((x+y)/3)=(2+f(x)+f(y))/3 for all real xa n dy and f^(prime)(2)=2, then determine y=f(x)dot

If f((x+y)/3)=(2+f(x)+f(y))/3 for all real xa n dy and f^(prime)(2)=2, then determine y=f(x)dot

Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=sqrt(2)f(x) for all x in R , then ,

Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=sqrt(2)f(x) for all x in R , then ,