Home
Class 11
MATHS
Let x in(1,oo) and n be a positive integ...

Let `x in(1,oo)` and `n` be a positive integer greater than `1`. If `f_n (x) =n/(1/log_2x+1/log_3x+...+1/log_nx)` , then `(n!)^(f_n (x))`equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

If f(x)=(p-x^(n))^((1)/(n)),p>0 and n is a positive integer then f[f(x)] is equal to

If n> 1 and log_2 x,log_3 x, log_x 16 , are in G.P., then what is x equal to ?

Derivative of f(x)=x^n is nx^(n-1) for any positive integer n.

If n in N, prove that 1/(log_2x)+1/(log_3x)+1/(log_4x)++(1)/(log_n x)=1/(log_(n !)x)

Let n=2006!. Then 1/(log_(2)n)+1/(log_(3)n)+…+1/(log_(2006)n) is equal to :

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to