Home
Class 12
MATHS
[" Q.1The maximum value of the function ...

[" Q.1The maximum value of the function "f(x)=3x^(3)-18x^(2)+27x-40],[" on the set "S={x in R:x^(2)+30<=11x}" is : "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the set S={x in R: x^(2)+30 le 11x} is:

The maximum value of the function f(x)=3x^(3)-18x^(2)+27x-40 on the set S={x in R: x^(2)+30 le 11x} is:

Find the maximum value of the function f(x)=5+9x-18x^(2)

The Minimum value of the function f(x)=x^(3)-18x^(2)+96x in [0,9]

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

The function f(x)=x^(3)-(15)/(2)x^(2)+18x+2 increases in

If x satisfies the condition f(x)={x:x^(2)+30<=11x} then maximum value of function f(x)=3x^(3)-18x^(2)-27x-40 is equal to (A)-122(B)122(C)222(D)-222