Home
Class 12
MATHS
Prove that: int0^(2a)f(x)dx=int0^(2a)...

Prove that: `int_0^(2a)f(x)dx=int_0^(2a)f(2a-x)dxdot`

Text Solution

Verified by Experts

`L.H.S. = ∫_0^(2a)​f(x)dx`
By property, the integral limits can be split from `0` to `a` and `a` to `2a`
∴ L.H.S.
`=∫_0^(a)f(x)dx+∫_a^(2a)​f(x)dx`
In the second integral, substitute
`x=2a−t`, then `dx=−dt`
`L.H.S. =∫_0^(a)​f(x)dx+∫_a^0​` `f(2a−t)(−dt)`
`=∫_0^a​f(x)dx−∫_a^0​f(2a−t)dt`
Interchanging the limits of the second integral
and changing the variable t to x, we get
`L.H.S. =∫_0^a​f(x)dx+∫_0^a​f(2a−x)dx`
...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Prove that : int_(0)^(2a) f(x)dx=int_(0)^(a) f(x)dx+int_(0)^(a) f(x)dx+int_(0)^(a) f(2a-x)dx

Prove that : int_(0)^(a) f(x) dx = int_(0)^(a) f(a-x)dx hence evaluate : int_(0)^(pi//2) (sin x)/(sin x + cos x) dx

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

Prove that int_(0)^(a) f(x) dx= int_(0)^(a) f(a-x)dx . Hence find int_(0)^((pi)/(2)) sin^(2) xdx

int_0^a f(a-x) dx=

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx