Home
Class 11
MATHS
Prove the following by using the princip...

Prove the following by using the principle of mathematical induction for all `n in N`:`3^(2n+2)-8n-9`is divisible by 8.

Text Solution

Verified by Experts

Given expression is.
`3^(2n+2)-8n-9`
When `n = 1`, given expression is,
`3^4-8-9 = 81-17 = 64`
So, for `n=1`, given expession is divisible by `8`.
Let for any `k in N`, given expression is divisible by `8`.
Then, `3^(2k+2)-8k-9 = 8c->(1)`, where `c` is a natural number.
...
Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT|Exercise EXERCISE 4.1|24 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT|Exercise EXERCISE 7.2|5 Videos
  • PROBABILITY

    NCERT|Exercise EXERCISE 16.3|21 Videos

Similar Questions

Explore conceptually related problems

Prove the following by using the principle of mathematical induction for all n in Nvdotsx^(2n)-y^(2n) is divisible by x+y

Prove the following by using the principle of mathematical induction for all n in Nvdots10^(2n-1)+1 is divisible by 11.

Prove the following by using the Principle of mathematical induction AA n in N n<2^(n)

Prove the following by using the principle of mathematical induction for all n in Nvdots(2n+7)<(n+3)^(2)

Prove the following by using the Principle of mathematical induction AA n in N 3^(n)>2^(n)

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+1)>2n+1

Prove the following by using the Principle of mathematical induction AA n in N 2^(n+3)le(n+3)!

Prove the following by using the principle of mathematical induction for all n in Nvdots41^(n)-14^(n) is a multiple of 27

Prove the following by using the principle of mathematical induction for all n in Nvdotsn(n+1)(n+5) is a multiple of 3.

Prove by using the principle of mathematical induction that for all n in N, 10^(n)+3.4^(n+2)+5 is divisible by 9

NCERT-PRINCIPLE OF MATHEMATICAL INDUCTION-EXERCISE 4.1
  1. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  2. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  3. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  4. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  5. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  6. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  7. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  8. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  9. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  10. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  11. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  12. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  13. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  14. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  15. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  16. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  17. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  18. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  19. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |

  20. Prove the following by using the principle of mathematical induction ...

    Text Solution

    |