Home
Class 12
MATHS
[" The value of "lim(x rarr0)(1)/(x^(3))...

[" The value of "lim_(x rarr0)(1)/(x^(3))int_(0)^(x)(t ln(1+t)/(t^(4)+4)dt" is "],[" B "0],[" C) "1/12],[" D) "1/64]

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of lim_(x rarr 0) (1)/(x^(3)) int_(0)^(x) (t In (1 + t))/(t^(4) + 4)dt is :

lim_(x rarr0)(1)/(x^(3))int_(0)^(x)(t ln(1+t))/(t^(4)+4)backslash dt

lim_(x rarr0)(1)/(x^(2))int_(0)^(x)(tdt)/(t^(4)+1) is equal to

Find the value of Lim_(x rarr 0) (1)/(x^(3)) int_(0)^(x) (t(ln (1+t)))/(t^(4) + 4)dt

The value of lim_(x rarr0)(1+(1)/(x))^(x) is-

The value of lim_(x rarr0)int_(0)^(x)(t ln(1+t))/(t^(4)+4)dt

The value of (lim_(x rarr0)(1)/(x^(6))int_(0)^(x^(2))sin(t^(2))dt) is equal to

The value of lim_(x rarr0)cos ec^(4)x int_(0)^(x^(2))(ln(1+4t))/(t^(2)+1)dt is

lim_(x rarr0)((4+x)^(3)-64)/(x)