Home
Class 12
MATHS
[" Let "F(x)" be ca indetinite integral ...

[" Let "F(x)" be ca indetinite integral of sin "2x" ."],[" Stotertent-f: The function "F(x)" satisfies "F(x+pi)=F(x)" for all real "x" ."],[" Stoters ent- "2:sin2(x+pi)=sin2x" for all real "x]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let F(x) be an indefinite integral of sin^(2)x Statement-1: The function F(x) satisfies F(x+pi)=F(x) for all real x. because Statement-2: sin^(2)(x+pi)=sin^(2)x for all real x.

Let F(x) be an indefinite integral of sin2x . Statement- 1: The function F(x) satisfies F(x+pi)=F(x) for all real x . Statement- 2: sin2(x+pi)=sin2x for all real x . (A) Statement I is true, Statement II is also true, Statement II is the correct explanation of Statement I. (B)Statement I is true, Statement II is also true, Statement II is not the correct explanation of Statement I. (C) Statement I is true, Statement II is false. (D) Statement I is false, Statement II is ture.

Let F(x) be an indefinite integral of sin^(2) x Statement - I : The function F(x) satisfies F(x+pi) = F(x) for all real x Statement - II : sin^(2) (pi+x) = sin^(2) x for all real x

Let F(x) be an indefinite integral of sin^(2)x Statement I The function F(x) satisfies F(x+pi)=F(x) for all real x. Because Statement II sin^(2)(x+pi)=sin^(2)x, for all real x.

Let F(x) be an indefinite integral of sin^(2)x Statement-1: The function F(x) satisfies F(x+pi)=F(x) for all real x. because Statement-2: sin^(3)(x+pi)=sin^(2)x for all real x. A) Statement-1: True , statement-2 is true, Statement -2 is not a correct explanation for statement -1 c) Statement-1 is True, Statement -2 is False. D) Statement-1 is False, Statement-2 is True.

Let F(x) be an indefinite integral of sin^(2)x Statement-1: The function F(x) satisfies F(x+pi)=F(x) for all real x. because Statement-2: sin^(3)(x+pi)=sin^(2)x for all real x. A) Statement-1: True , statement-2 is true, Statement -2 is not a correct explanation for statement -1 c) Statement-1 is True, Statement -2 is False. D) Statement-1 is False, Statement-2 is True.

Let f(x) be an indefinite integral of sin^(2)x . Consider the following statements : Statements 1. The function f(x) satisfies f(x+pi)=f(x) for all real x. 2. Sin^(2)(x+pi)=sin^(2)x for all real x. Which one of the following is correct in respect of the above statements ?

If f (x) satisfies the relation 2 f(x ) + f(1-x) =x^2 for all real x, then f (x) is

Find f'(x)" if "f(x)= (sin x)^(sin x) for all 0 lt x lt pi .

Find f'(x)" if "f(x)= (sin x)^(sin x) for all 0 lt x lt pi .