Home
Class 11
MATHS
The valueof sum(r=1)^n r^4 - sum(r=1)^(n...

The valueof `sum_(r=1)^n r^4 - sum_(r=1)^(n+2) (n+1-r)^4` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(r=1)^n r (n-r +1) is equal to :

sum_(r=1)^n r (n-r +1) is equal to :

sum_(r=1)^(n)r^(2)-sum_(m=1)^(n)sum_(r=1)^(m)r is equal to

sum_(r=1)^(n)(C(n,r))/(r+2) is equal to

sum_(r=1)^(n)r^(3)=f(n) then sum_(r=1)^(n)(2r-1)^(3) is equal to

(sum_(r=1)^(n)r^(4))/(sum_(r=1)^(n)r^(2)) is equal to

sum_(r=1)^n r(n-r) is equal to :

sum_(r=1)^n r(n-r) is equal to :