Home
Class 12
PHYSICS
Standing Wave Vibrations of string fixed...

Standing Wave Vibrations of string fixed at both ends

Promotional Banner

Similar Questions

Explore conceptually related problems

Vibrations of string fixed at one end

The equation for the vibration of a string fixed at both ends vibrating in its third harmonic is given by y=2cm sin[(0.6cm^-1)x]cos[(500pis^-1)t] . The length of the string is

The equation for the vibration of a string fixed at both ends vibrating in its second harmonic is given by y=2sin(0.3cm^(-1))xcos((500pis^(-1))t)cm . The length of the string is :

The equation of a standing wave, produced on a string fixed at both ends, is y = (0.4 cm) sin[(0.314 cm^-1) x] cos[(600pis^-1)t] What could be the smallest length of the string ?

The equation of a standing wave in a string fixed at both its ends is given as y=2A sin kx cos omegat . The amplitude and frequency of a particle vibrating at the point of string midway between a node and an antinode is

The wave-function for a certain standing wave on a string fixed at both ends is y(x,t) = 0.5 sin (0.025pix) cos500t where x and y are in centimeters and t is seconds. The shortest possible length of the string is :

Vibrations of string fixed at both ends | Sonometer wire questions | Vibrations of string fixed at one end and free at other end | Sound waves introduction

the equation for the vibration of a string fixed both ends vibration in its third harmonic is given by y = 2 cm sin [(0.6cm ^(-1))xx ] cos [(500 ps^(-1)t]

Discuss the formation of stationary waves in a string fixed at both the ends and also explain different modes of vibration.