Home
Class 12
MATHS
If y=x^(logx)+(logx)^x , find (dy)/(dx)...

If `y=x^(logx)+(logx)^x` , find `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(logx)+(logx)^x then find (dy)/(dx)

If y=x^(logx)+(logx)^x then find (dy)/(dx)

If y=x^((logx)^log(logx)) , then (dy)/(dx) is

If y=x^((logx)^log(logx)) then (dy)/(dx)=

If y=x^((logx)^(log(logx))) , then (dy)/(dx) is

If y=x^(n)logx+x(logx)^(n)," then "(dy)/(dx) is equal to

If y= (log x) ^(logx) ,then (dy)/(dx)=

If y= ( log sin x) (logx ) ,then (dy)/(dx)

y= (logx)^(x)-x^(logx) find dy/dx

If y=(logx)/(x) , then find (dy)/(dx)