Home
Class 11
MATHS
" If "alpha" and "beta" are the solution...

" If "alpha" and "beta" are the solution of "a cos theta+b sin theta=c," then show that "cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the solutions of a cos theta+b sin theta=c, then show that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))( ii) cos(alpha-beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

If alpha,beta are the roots of the equation a cos theta+b sin theta=c, then prove that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the solutions of a cos theta+b sin theta=c , then prove that : cos (alpha- beta)= (2c^2- (a^2+b^2))/(a^2+b^2) .

If alpha, beta are the solutions of a cos 2theta + b sin 2theta = c , then tan alpha tan beta=

If alpha and beta are the solutions of a cos theta+b sin theta=c, show that sin alpha+sin beta=(2bc)/(a^(2)+b^(2)) and sin alpha sin beta=(c^(2)-a^(2))/(a^(2)+b^(2))

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .