Home
Class 12
MATHS
28." If "y=sin^(-1)((sqrt(1+x)+sqrt(1-x)...

28." If "y=sin^(-1)((sqrt(1+x)+sqrt(1-x))/(2))," then show that "(dy)/(dx)=(-1)/(2sqrt(1-x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))/(2)} " then " (dy)/(dx) = ?

If y=sin^-1((sqrt(1+x)+sqrt(1-x))/2) Find dy/dx .

y=tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)) show that dy/dx=1/(2sqrt(1-x^2))

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

y=sin^(-1)(xsqrt(1-x)+sqrtxsqrt(1-x^2)) show that dy/dx=(1)/(sqrt(1-x^2))-1/(2(sqrt(x-x^2)))

If y = sin^(-1){(5x+12sqrt(1-x^2))/13} then show that (dy)/(dx) = 1/sqrt(1-x^2)

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))

If y = sin^(-1) x^2 sqrt(1 - x^2) + xsqrt(1 - x^4) , show that (dy)/(dx) - (2x)/(sqrt(1 - x^4)) = 1/(sqrt(1 - x^2))