Home
Class 20
MATHS
10.x=sqrt(a^(sin^(-1)t))" and "y=sqrt(a^...

10.x=sqrt(a^(sin^(-1)t))" and "y=sqrt(a^(cos^(-1)t))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sqrt(a^(sin^(-1)t)" and "y=sqrt(a^(cos^(-1)t) show that (dy)/(dx)=-(y)/(x) .

If x=sqrt( a^(sin^(-1)t)) and y=sqrt( a^(cos^(-1)t)) find dy/dx

For a gt 0, t in (0, (pi)/(2)) . Let x= sqrt(a^(sin^(-1)t)) and y= sqrt(a^(cos^(-1)t)), then 1+((dy)/(dx))^(2) equals.

If x = sqrt(a^(sin^(-1)t)) and y= sqrt(a^(cos^(-1)t) show that (dy)/(dx)= -y/x .

For t in (0,1), Let \x= sqrt( 2 ^(sin^(-1)(t))) and y=sqrt(2 ^(cos^(-1)(t))) then 1+ ((dy)/(dx))^(2) equals :

If x = sqrt(a^(sin^(-1)t)) , y = sqrt(a^(cos^(-1)t) then show that, dy/dx=-y/x.

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , Show that (dy)/(dx)=-y/x .