Home
Class 11
MATHS
The locus of a point P ,so that the joi...

The locus of a point P ,so that the join of (-5,-1) and (3,2) subtend,a right angle at P is
`x^(2)+y^(2)+2x-3y-13=0`
`x^2+y^(2)+2x-3y-17=0`
`x^(2)+y^(2)+2x-y-17=0`
`x^(2)+y^(2)+4x-2y+1=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of a point "P" ,if the join of the points (2,3) and (-1,5) subtends right angle at "P" is x^(2)+y^(2)-x-8y+13=0 x^(2)-y^(2)-x+8y+3=0 x^(2)+y^(2)-4x-4y=0,(x,y)!=(0,4)&(4,0) x^(2)+y^(2)-x-8y+13=0,(x,y)!=(2,3)&(-1,5)

The equation to the locus of a point P for which the distance from P to (0,5) is double the distance from P to y -axis is 1) 3x^(2)+y^(2)+10y-25=0 2) 3x^(2)-y^(2)+10y+25=0 3) 3x^(2)-y^(2)+10y-25=0 4) 3x^(2)+y^(2)-10y-25=0

If points A and B are (1,0) and (0,1) respectively,and point C is on the circle x^(2)+y^(2)=1, then the locus of the orthocentre of triangle ABC is x^(2)+y^(2)=4x^(2)+y^(2)-x-y=0x^(2)+y^(2)-2x-2y+1=0x^(2)+y^(2)+2x-2y+1=0

If the distance from P to the points (5,-4),(7,6) are in the ratio 2:3 ,then the locus of P is 5x^(2)+5y^(2)-12x-86y+17=0 , 5x^(2)+5y^(2)-34x+120y+29=0, 5x^(2)+5y^(2)-5x+y+14=0 3x^(2)+3y^(2)-20x+38y+87=0

If the lines 2x+3y+1=0 and 3x-y-4=0 lie along diameters of a circle of circumference 10 pi ,then the equation of the circle is (A) x^(2)+y^(2)-2x+2y-23=0 (B) x^(2)+y^(2)+2x-2y-23=0 (C) x^(2)+y^(2)+2x+2y-23=0 (D) x^(2)+y^(2)-2x-2y-23=0

The locus of the image of the point (2,3) in the line (x-2y+3)+lambda(2x-3y+4)=0 is (lambda in R)( a) x^(2)+y^(2)-3x-4y-4=0 (b) 2x^(2)+3y^(2)+2x+4y-7=0(c)x^(2)+y^(2)-2x-4y+4=0(d) none of these

The angle between the pair of tangents drawn from a point P to the circle x^(2)+y^(2)+4x-6y+9sin^(2)alpha+13cos^(2)alpha=0 is 2 alpha. then the equation of the locus of the point P is x^(2)+y^(2)+4x-6y+4=0x^(2)+y^(2)+4x-6y-9=0x^(2)+y^(2)+4x-6y-4=0x^(2)+y^(2)+4x-6y+9=0

The equation of the circle having its centre on the line x+2y-3=0 and passing through the points of intersection of the circles x^(2)+y^(2)-2x-4y+1=0andx^(2)+y^(2)-4x-2y+4=0 is x^(2)+y^(2)-6x+7=0x^(2)+y^(2)-3y+4=0 c.x^(2)+y^(2)-2x-2y+1=0x^(2)+y^(2)+2x-4y+4=0

I. 3x^(2) - 17x+10 = 0 II. 2y^(2) -5y+3 = 0

Let the foci of the ellipse (x^(2))/(9)+y^(2)=1 subtend a right angle at a point P. Then,the locus of P is (A) x^(2)+y^(2)=1(B)x^(2)+y^(2)=2 (C) x^(2)+y^(2)=4(D)x^(2)+y^(2)=8