Home
Class 11
MATHS
In a triangle ABC, if (cosA)/a=(cosB)/b=...

In a triangle ABC, if `(cosA)/a=(cosB)/b=(cosC)/c` and the side `a =2`, then area of triangle is

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC,if (cos A)/(a)=(cos B)/(b)=(cos C)/(c) and the side a=2 then area of triangle is and the side a=2

ln a DeltaABC , if (cosA)/a=(cosB)/b=(cosC)/c and the side a = 2, then area of the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in DeltaABC,(cosA)/(a)=(cosB)/(b)=(cosC)/(c) and side a=2, then the area of the triangle is

IN triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=

In triangle ABC, 2(bc cosA-ac cosB-ab cosC)=

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is