Home
Class 12
MATHS
The possible real values of x>0 for whi...

The possible real values of x>0 for which I `(x)=int_(0)^(x)[t]^(2)dt=2(x-1)` where [.] denotes G. I.F

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x) = int_(0)^(x) (t^2+2t+2) dt where x in [2,4] then

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

For the function f(x)=int_(0)^(x)(sin t)/(t)dt where x>0

The value of int_(0)^(2)[x]*x^(2)dx is (where [*]rarr G.I.F

The value of int_(0)^(2)[x]*x^(2)dx is (where [*]rarr G.I.F)

The value of lim_(x rarr0)x^(2)[(1)/(x^(2))] where [.] denotes G.L.F.is

If f(x)={int_(0)^(x)|1-t|dt;x>1,x-(1)/(2);x<=1 then

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then