Home
Class 11
MATHS
f(x)=(int(0)^(x)(4+|t–2|)dt, for x>3, a...

f(x)=`(int_(0)^(x)(4+|t–2|)dt`, for x>3, `ax^2+ bx`, for `x <=3` If f(x) is differentiable at x = 3, then `b/a-80`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x)tf(t)dt+2, then

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

If A(x)=int_(0)^(x)t^(2) dt, then : A (3) =

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x)={int_(0)^(x)|1-t|dt;x>1,x-(1)/(2);x<=1 then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

if f(x) = int_(0)^(x) (t^2+2t+2) dt where x in [2,4] then