Home
Class 11
MATHS
The range of the function f(x)=(e^(x)-1)...

The range of the function `f(x)=(e^(x)-1)/(e^(x)+1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(e^(2x)-1)/(e^(2x)+1) is

The range of the function f(x)=e^(x)-e^(-x) is

f(x)=((e^(2x)-1)/(e^(2x)+1)) is

The range of the function f(x)=e^(-x)+e^(x), is

The range of the function f(x)=(e^(x)-e^(|z|))/(e^(x)+e^(|x|)) is (-oo,oo)(b)[0,1](-1,0](d)(-1,1)

the function f(x)=(x)/(e^(x)-1)+(x)/(2)+1 is

The inverse of the function f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))-1 is

The inverse of the function f(x)=(e^(x)-2e^(-x))/(e^(x)+2e^(-x))+1 is

Range of the f(x)=(e^(x)-1)/(e^(x)+1)