Home
Class 12
MATHS
If x is a cube root of unity other then ...

If x is a cube root of unity other then `1`, then `(x+(1)/(x))^(2)+(x^(2)+(1)/(x^(2)))^(2)+.....+(x^(12)+(1)/(x^(12)))^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x^(2)+(1)/(x))^(12)

(vi) (2x ^ (2) - (1) / (x)) ^ (12)

If x+ (1)/(x)= -2 , find x^(11) + (1)/(x^(12))= ?

(x+1)/(2)+(x-1)/(3)=(5)/(12)(x-2)

If x+1/x=2 then x^(12)-1/x^(12)=

If omega is a complex cube root of unity then x_(n)=omega^(n)+(1)/(omega^(n)) then x_(1)x_(2)x_(3),............,x_(12)=

If 1,x_(1),x_(2),x_(3) are the roots of x^(4)-1=0andomega is a complex cube root of unity, find the value of ((omega^(2)-x_(1))(omega^(2)-x_(2))(omega^(2)-x_(3)))/((omega-x_(1))(omega-x_(2))(omega-x_(3)))

If (x^(2) - x - 1)^(x^(2) - 7x + 12) = 1 then

(2x + 3) / (x ^ (2) + x-12) <= (1) / (2)