Home
Class 11
MATHS
(log(2)3)(log(1/3)5)(log(4)6)<1...

`(log_(2)3)(log_(1/3)5)(log_(4)6)<1`

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression: (((x^(2)+3x+2)/(x+2))+3x-(x(x^(3)+1))/((x+1)(x^(2)+1))-log_(2)8)/((x-1)(log_(2)3)(log_(3)4)(log_(4)5)(log_(5)2)) reduces to

Prove that (log_(4)2)(log_(2)3)=(log_(4)5)(log_(5)3)

(log_(5)4)(log_(4)3)(log_(3)2)(log_(2)1) =

Find the value of (log_(3)4)(log_(4)5)(log_(5)6)(log_(6)7)(log_(7)8)(log_(8)9)

((log)_(2)3)(log)_(3)4(log)_(4)5(log)_(n)(n+1)=10 Find n=?

Leg f(x)=log(log_(1/3)(log_((1)/(3))(log_(7)(sin x+a)))) be defined for every real value of x, then the possible value of a is 3 (b) 4(c)5(d)6

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

let E=log_(2)(log_(2)3)+log_(2)(log_(3)4)+log_(2)(log_(4)5)+log_(2)(log_(5)6)+log_(2)(log_(6)7)+log_(2)(log_(7)8 then 8^(E) is

If x=(2)^((log_(2)3log_(3)4log_(4)5)......log_(19)20),y=5^(log_(2)3)-3^(log_(2)5),z=log_(sqrt(256))sqrt(log_(sqrt(2))4) then value of (x+y).z is

The domain of the function f(x)=log_(2)[log_(3)(log_(4)(x^(2)-3x+6)}]is