Home
Class 12
MATHS
int(ln x)/(x^(3))dx=A(ln x)/(x^(2))+(B)/...

`int(ln x)/(x^(3))dx=A(ln x)/(x^(2))+(B)/(x^(2))+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(log x)/(x^(2))dx

int (ln x)^2/(x)dx

int(log x)^(3/2)/(x)dx

int ln(x^(2)+x+2)dx

int x (log x)^(2)dx

If int(1)/(x^(3)+x^(4))dx=(A)/(x^(2))+(B)/(x)+log|(x)/(x+1)|+C , then

int(ln(6x^(2)))/(x)dx

int(x ln x)/((x^(2)-1)^((3)/(2)))dx

If int(dx)/(x^(4)+x^(2))=(A)/(x^(2))+(B)/(x)+ln|(x)/(x+1)|+C then

int [ln (ln x)+(1)/((ln x)^(2))] dx