Home
Class 11
MATHS
If any triangle A B C , that: (b^2-c^2)/...

If any triangle `A B C` , that: `(b^2-c^2)/(cosB+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

(b^2-c^2)/(cos B+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=……

for any triangleABC show that (b^2-c^2)/(cosB+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=0

Show that in a triangle ABC, (b^2-c^2)/(cosB+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=0

Prove that (sin(B-C))/(cosB cosC)+(sin(C-A))/(cosC cosA)+(sin(A-B))/(cosA cosB) =0 .

(a+b+c)(cosA+cosB+cosC)

In any triangle ABC, prove that : (cosA)/a+ (cosB)/b+(cosC)/c= (a^2+b^2+c^2)/(2abc) .

For any triangle ABC, prove that (cosA)/a+(cosB)/b+(cosC)/c=(a^2+b^2+c^2)/(2a b c)

In Delta ABC prove that a(b^2 + c^2) cosA + b(c^2 +a^2)cosB + c(a^2 + b^2) cosC = 3abc

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

In any Delta A B C , prove that: (cosA)/(bcosC+c cosB)+(cosB)/(c cosA+acosC)+(cosC)/(acosB+bcosA)=(a^2+b^2+c^2)/(2a b c)