Home
Class 12
MATHS
Maximise Z = x + 2y, subject to the con...

Maximise `Z = x + 2y`, subject to the constraints:`xgeq3,x+ygeq5,x+2ygeq6,ygeq0.`

Text Solution

AI Generated Solution

To solve the problem of maximizing \( Z = x + 2y \) subject to the constraints \( x \geq 3 \), \( x + y \geq 5 \), \( x + 2y \geq 6 \), and \( y \geq 0 \), we will follow these steps: ### Step 1: Identify the constraints The constraints given are: 1. \( x \geq 3 \) 2. \( x + y \geq 5 \) 3. \( x + 2y \geq 6 \) 4. \( y \geq 0 \) ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Maximise Z= -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .

Maximize: Z = -x + 2y , subject to the constraints: x ge 3, x + y ge 5, x + 2y ge 6, y ge 0 .

Maximise Z=-x+2y Subject to the constraints xge3, x+3yge5,x+2yge6,yge0

For the LPP , maximize z = x + 4y subject to the constraints x+2yle2,x+2yge8,x,yge0

Maximise Z=3x+4y Subject to the constraints x+yle4,xge0,yge0

Maximise Z=3x+4y, Subjected to the constraints x+y le1, x ge 0, y ge 0

Maximize Z = 5x + 3y subject to the constraints: 3x + 5y le 15, 5x + 2y le 10, x ge 0, y ge 0

The minimum and maximum values problem, of Z for the minimise and maximise Z = 3x + 9 y subject to the constraints x+3y le 60,x + y ge 10 , x le y, are respectively

Minimize Z = 3x + 2y subject to the constraints : x + y ge 8, 3x + 5y le 15, x ge 0, y ge 0 .

Minimise the quantity Z=x+2y subject to the constraints: x+y geq1, x geq 0, y geq0