Home
Class 12
MATHS
int0^3(3x+1)/(x^2+9)dx = (pi)/(12)+log(2...

`int_0^3(3x+1)/(x^2+9)dx` = `(pi)/(12)+log(2sqrt(2))` (b) `(pi)/2+log(2sqrt(2))` (c) `(pi)/6+log(2sqrt(2))` (d) `(pi)/3+log(2sqrt(2))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(logx)/(sqrt(1-x^(2)))dx=-(pi)/(2)(log2)

int_(-(pi)/(2))^((pi)/(2))sin{log(x+sqrt(x^(2)+1))}dx

If log_(sqrt((pi)/(2)))(log_(9)(sqrt(3)+sqrt(12)))=2

int_(0)^((pi)/(2))(dx)/((1-2x^(2))sqrt(1-x^(2)))=(1)/(2)log(2+sqrt(3))

int_(0)^((pi)/(2))(dx)/((1-2x^(2))sqrt(1-x^(2)))=(1)/(2)log(2+sqrt(3))

int_(0)^(1)cot^(-1)(1-x+x^(2))dx=(1)(pi)/(2)-log2(2)(pi)/(2)+log2(3)pi-log2(4)pi+log2

int_0^(4/pi) (3x^2sin(1/x)-xcos(1/x))dx= (A) (8sqrt(2))/pi^3 (B) (32sqrt(2))/pi^3 (C) (24sqrt(2))/pi^3 (D) sqrt(2048)/pi^3

int_(0)^((pi)/(2))log sin xdx=int_(0)^((pi)/(2))log cos xdx=(1)/(2)(pi)log((1)/(2))

[int_(0)^(0)cot^(-1)(1-x+x^(2))dx=],[[" (A) "(pi)/(2)-ln2," (B) "(pi)/(2)+ln2],[" (C) "(pi)/(2)-ln sqrt(2)," (D) "(pi)/(2)+ln sqrt(2)]]

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=