Home
Class 12
MATHS
Evaluate : int(x^2)/(sqrt(1-x^2))dx...

Evaluate : `int(x^2)/(sqrt(1-x^2))dx`

Text Solution

AI Generated Solution

To evaluate the integral \(\int \frac{x^2}{\sqrt{1-x^2}} \, dx\), we can use a trigonometric substitution. Here’s a step-by-step solution: ### Step 1: Substitution Let \(x = \sin \theta\). Then, we have: \[ dx = \cos \theta \, d\theta \] Also, we can express \(\sqrt{1 - x^2}\) as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(sqrt(1-x^(2)))

Evaluate: int(1+x^(2))/(sqrt(1-x^(2)))dx

Evaluate: int(x+2)/(sqrt(x^2-1))\ dx

Evaluate: int(x^(2))/(sqrt(1-2x-x^(2)))dx

Evaluate: int1/(x^2sqrt(1+x^2))\ dx

Evaluate: int(x+1)sqrt(1-x-x^(2))dx

Evaluate: int(x)/(x-sqrt(x^(2)-1))dx

Evaluate: int(x-1)/(sqrt(x^(2)-x))dx

Evaluate: int(x-1)/(sqrt(x^(2)-x))dx

Evaluate: int(x-1)/(sqrt(x^(2)-x))dx