Home
Class 14
MATHS
" 3) frovethat "|[a^(2)+2a,2a+1,1],[2a+1...

" 3) frovethat "|[a^(2)+2a,2a+1,1],[2a+1,a+2,1]|=(a-1)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[a^2+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^3

Prove that: |a^2+2a2a+1 1 2a+1a+2 1 3 3 1|=(a-1)^3 .

|(a^(2)+2a,2a+1,1),(2a+1,a+2,1),(3,3,1)|

Using properties of determinants prove that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Show that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Prove that: {:|(a^2+2a,2a+1,1), (2a+1,a+2,1),(3,3,1)|:}=(a-1)^3 .

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Prove: |1a a^2a^2 1a a a^2 1|=(a^3-1)^2