Home
Class 10
MATHS
(v)a^(2)y^(2)+aby=b^(2),a!=0...

(v)a^(2)y^(2)+aby=b^(2),a!=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). a ^(2) y ^(2) - 2 aby + b ^(2)

(x)/(a)+(y)/(b)=a+b(x)/(a^(2))+(y)/(b^(2))=2,a!=0,b!=0

If H=(x^(2))/(a^(2))-(y^(2))/(b^(2))-1=0, C=(x^(2))/(a^(2))-(y^(2))/(b^(2))+1=0 and A=(x^(2))/(a^(2))-(y^(2))/(b^(2))=0 then H, A and C in

If H=(x^(2))/(a^(2))-(y^(2))/(b^(2))-1=0, C=(x^(2))/(a^(2))-(y^(2))/(b^(2))+1=0 and A=(x^(2))/(a^(2))-(y^(2))/(b^(2))=0 then H, A and C are in

If H=(x^(2))/(a^(2))-(y^(2))/(b^(2))-1=0, C=(x^(2))/(a^(2))-(y^(2))/(b^(2))+1=0 and A=(x^(2))/(a^(2))-(y^(2))/(b^(2))=0 then H, A and C are in

if a>2b>0, then positive value of m for which y=mx-b sqrt(1+m^(2)) is a common tangent to x^(2)+y^(2)=b^(2) and (x-a)^(2)+y^(2)=b^(2) is

(a)/(x)-(b)/(y)=0,(ab^(2))/(x)+(a^(2)b)/(y)=a^(2)+b^(2)

The number of solution of the set of equations (x^(2))/a^(2)+(y^(2))/(b^(2))-(z^(2))/(c^(2))=0,(x^(2))/(a^(2))-(y^(2))/(b^(2))+(z^(2))/(c^(2))=0,-(x^(2))/(a^(2))+(y^(2))/(b^(2))+(z^(2))/(c^(2))=0 is

Find the equation of the normal to the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at (x_(0),y_(0))