Home
Class 11
MATHS
" Solve "sqrt(3x^(2)-7x-30)+sqrt(2x^(2)-...

" Solve "sqrt(3x^(2)-7x-30)+sqrt(2x^(2)-7x-5)=x+5

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(3x^(2)-7x -30) - sqrt(2x^(2) -7x -5) = x -5 has alpha and beta as its roots, then the value of alpha beta is

Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5

Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5

Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5

The number of solutions of sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5 is

Solve sqrt(5x^(2)-6x+8)-sqrt(5x^(2)-6x-7)=1

Solve sqrt(2)x^(2)+7x+5sqrt(2)=0

Solve (i) sqrt(5x^(2)-6x+8)-sqrt(5x^(2)-6x-7)=1 (ii)Solve (x^(2)-5x+7)^(2)-(x-2)(x-3)=1